
Agilent 4-Port PNA-L Microwave Network Analyzer

N5230A Options 240 and 245 300 kHz to 20 GHz

Data Sheet

Note:

Specification information in this document is also available within the PNA-L network analyzer's internal Help system.

Table of Contents

Definitions
Corrected System Performance
Table 1. System dynamic range 4
Table 2. Extended dynamic range 5
N5230A Option 245
Corrected system performance with 3.5mm connectors
Table 3. 85052B Calibration kit N5230A –
Configurable test set and extended power range (Option 245) $\ldots 6$
Table 4. N4691A Electronic calibration module N5230A –
Configurable test set and extended power range (Option 245) \ldots .8
Table 5. Uncorrected system performance 10
Table 6. Test port output 11
Table 7: Test port input 13
Table 8. Dynamic accuracy
Table 9. Test port input (group delay) 21
General Information
Table 10. Miscellaneous information 22
Table 11. Front panel information
Table 12. Rear panel information 23
Table 13. Analyzer environment and dimensions 24
Measurement Throughput Summary
Table 14. Typical cycle time (ms) for measurement completion25
Table 15. Cycle time vs IF bandwidth
Table 16. Cycle time vs number of points
Table 17. Data transfer time (ms)
Specifications: Front-Panel Jumpers
Table 18: Measurement receiver inputs, 0.1 dB typical compression . 29
Table 19: Reference receiver input at max. specified output power 29
Table 20: Reference output at max. specified output power
Table 21: Source outputs at max. specified output power 30
Table 22: Coupler inputs, insertion loss of coupler thru 30
Table 23: Coupler outputs 30
Test Set Block Diagrams
N5230A Option 240
(standard test set and standard power range) network analyzer 31
N5230A Option 245
(configurable test set and extended power range) network analyzer . 31
Web Resources

This is a subset of technical specifications for the N5230A Option 240 and 245 network analyzer.

To view or print the N5230A technical specifications, visit our web site at www.agilent.com/find/pnal

This N5230A document provides technical specifications for the following calibration kit and ECal module only: 85052B and N4691A. Please download our free Uncertainty Calculator from **www.agilent.com/find/na_calculator** to generate the curves for your calibration kit and PNA setup.

Definitions

All specifications and characteristics apply over a 25 $^{\circ}\mathrm{C}$ ±5 $^{\circ}\mathrm{C}$ range (unless otherwise stated) and 90 minutes after the instrument has been turned on.

Specification (spec.): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions.

Characteristic (char.): A performance parameter that the product is expected to meet before it leaves the factory, but that is not verified in the field and is not covered by the product warranty. A characteristic includes the same guardbands as a specification.

Typical (typ.): Expected performance of an average unit which does not include guardbands. It is not covered by the product warranty.

Nominal (nom.): A general, descriptive term that does not imply a level of performance. It is not covered by the product warranty.

Calibration: The process of measuring known standards to characterize a network analyzer's systematic (repeatable) errors.

Corrected (residual): Indicates performance after error correction (calibration). It is determined by the quality of calibration standards and how well "known" they are, plus system repeatability, stability, and noise.

Uncorrected (raw): Indicates instrument performance without error correction. The uncorrected performance affects the stability of a calibration.

Standard: When referring to the analyzer, this includes no options unless noted otherwise.

Corrected System Performance

The specifications in this section apply for measurements made with the N5230A Options 240 and 245 analyzer with the following conditions:

- 10 Hz IF bandwidth
- No averaging applied to data
- Isolation calibration with an averaging factor of 8

Table 1. System dynamic range at test port¹

Standard configuration and standard power range (Option 240)

Description	Specification (dB) at test port	Typical (dB) at test port
300 kHz to 10 MHz		111
10 MHz to 4 GHz ²	120	128
4 GHz to 6 GHz	118	129
6 GHz to 10.5 GHz	115	127
10.5 GHz to 15 GHz	107	119
15 GHz to 20 GHz	103	116

Configurable test set and extended power range (Option 245)

Description	Specification (dB)	Typical (dB)
Description	at test port	at test port
300 kHz to 10 MHz		111
10 MHz to 4 GHz ²	120	128
4 GHz to 6 GHz	118	128
6 GHz to 10.5 GHz	113	125
10.5 GHz to 15 GHz	105	117
15 GHz to 20 GHz	98	115

 The system dynamic range is calculated as the difference between the noise floor and the specified source maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account.

2. May be degraded by 10 dB at particular frequencies (multiples of 5 MHz) below 500 MHz due to spurious receiver residuals. Methods are available to regain the full dynamic range.

Table 2. Extended dynamic range¹

	Specification (dB) at	Typical (dB) at	
Description	direct receiver	direct receiver	
	access input	access input	
300 kHz to 10 MHz		127	
10 MHz to 4 GHz ²	136		
4 GHz to 6 GHz	134		
6 GHz to 10.5 GHz	129		
10.5 GHz to 15 GHz	121		
15 GHz to 20 GHz	114		

Configurable test	set and extended	nower range	(Ontion 245)
ooningurable test	Set and extenuet	power range	(Option 2+3)

- 1. The direct receiver access input extended dynamic range is calculated as the difference between the direct receiver access input noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account. This set-up should only be used when the receiver input will never exceed its compression or damage level. When the analyzer is in segment sweep mode, it can have predefined frequency segments which will output a higher power level when the extended dynamic range is required (i.e. devices with high insertion loss), and reduced power when receiver compression or damage may occur (i.e. devices with low insertion loss). The extended range is only available in one-path transmission measurements.
- 2. May be degraded by 10 dB at particular frequencies (multiples of 5 MHz) below 500 MHz due to spurious receiver residuals. Methods are available to regain the full dynamic range.

N5230A Option 245 Corrected system performance with 3.5 mm connectors¹

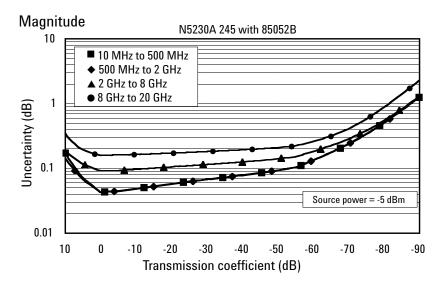
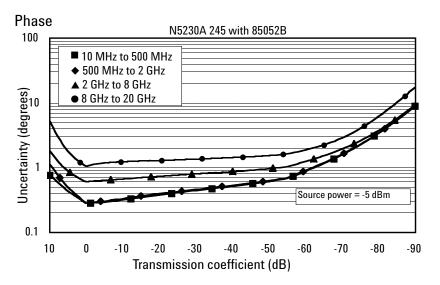
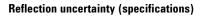
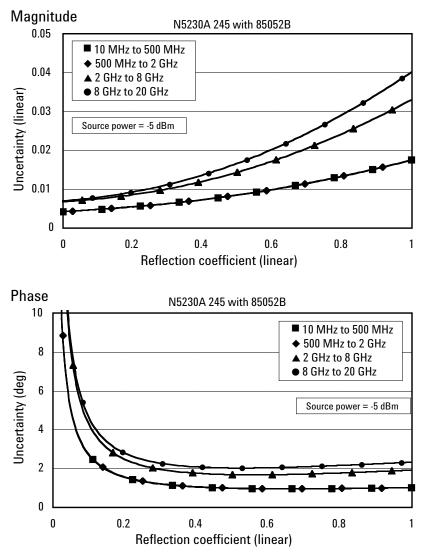

 $\begin{array}{lll} \text{Note:} & \text{For any } S_{ii} \text{ reflection measurement:} \\ S_{jj} = 0 \\ & \text{For any } S_{ij} \text{ transmission measurement:} \\ & S_{ji} = S_{ij} \text{ when } S_{ij} \leq 1 \\ & S_{ji} = 1/S_{ij} \text{ when } S_{ij} \geq 1 \\ & S_{kk} = 0 \text{ for all } k \end{array}$

Table 3. 85052B Calibration kit N5230A – configurable test set and extended power range (Option 245)

Applies to the N5230A Option 245 analyzers, 85052B (3.5mm) calibration kit, 85131F flexible test port cable set, and a full 2-port calibration. Also applies to the following condition: Environmental temperature $23^{\circ} \pm 3^{\circ}$ C, with < 1 °C deviation from calibration temperature.


	Specification (dB)			
Description	10 MHz to	500 MHz to	2 to	8 to
Description	500 MHz	2 GHz	8 GHz	20 GHz
Directivity	48	48	44	44
Source match	40	40	33	31
Load match	48	48	44	44
	±0.003	±0.003	±0.003	±0.006
Reflection tracking	(+0.01/°C)	(+0.01/°C)	(+0.02/°C)	(+0.03/°C)
Transmission tracking	±0.017	±0.017	±0.062	±0.125
	(+0.01/°C)	(+0.01/°C)	(+0.02/°C)	(+0.03/°C)


Transmission uncertainty (specifications)

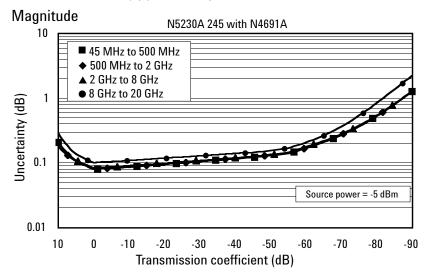


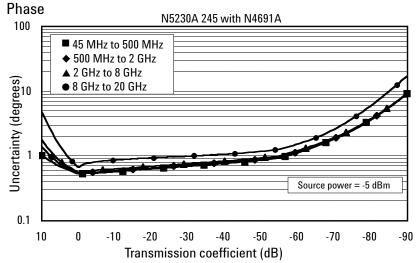
1. From 300 kHz to 10 MHz, performance is characterized as "typical". To generate these typical values, please download our free Uncertainty Calculator from www.agilent.com/find/na_calculator.

85052B Calibration kit (continued) N5230A – configurable test set and extended power range (Option 245)

N5230A Option 245

Corrected system performance with 3.5 mm connectors¹ (continued)

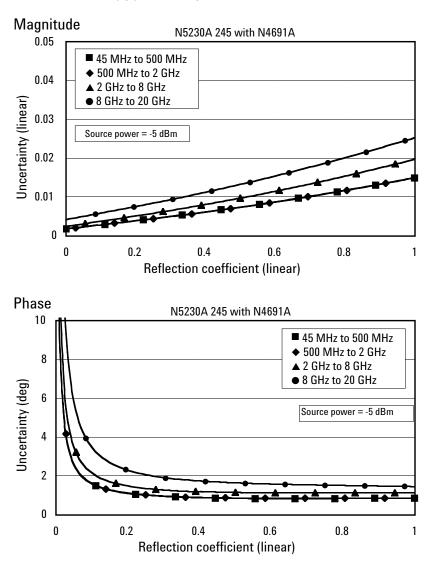

Table 4. N4691A Electronic calibration module


N5230A - configurable test set and extended power range (Option 245)

Applies to the N5230A Option 245 analyzers, N4691A electronic calibration module, 85131F flexible test port cable set, and a full 2-port calibration. Also applies to the following condition: Environmental temperature $23^{\circ} \pm 3^{\circ}$ C, with < 1 °C deviation from calibration temperature.

	Specification (dB)			
Description	45 MHz to	500 MHz to	2 to	8 to
	500 MHz	2 GHz	8 GHz	20 GHz
Directivity	56	56	54	49
Source match	47	47	45	44
Load match	46	46	45	43
Defle etien tue eliin u	±0.050	±0.050	±0.070	±0.090
Reflection tracking	(+0.01/°C)	(+0.01/°C)	(+0.02/°C)	(+0.03/°C)
Transmission tracking	±0.055	±0.056	±0.057	±0.071
	(+0.01/°C)	(+0.01/°C)	(+0.02/°C)	(+0.03/°C)

Transmission uncertainty (specifications)



1. From 300 kHz to 10 MHz, performance is characterized as "typical". To generate these typical values, please download our free Uncertainty Calculator from www.agilent.com/find/na_calculator.

N4691A Electronic calibration module (continued) N5230A – configurable test set and extended power range (Option 245)

Reflection uncertainty (specifications)

Table 5. Uncorrected system performance¹

Directivity	Specifications	Typicals
Directivity	Options 240, 245	Options 240, 245
300 kHz to 10 MHz		–23 dB
10 MHz to 1 GHz	–28 dB	
1 GHz to 3 GHz	–25 dB	
3 GHz to 5 GHz	–20 dB	
5 GHz to 11.5 GHz	–17 dB	
11.5 GHz to 20 GHz	–15 dB	

Source match

300 kHz to 10 MHz		—8 dB
10 MHz to 1 GHz	–12 dB	
1 GHz to 3 GHz	–12 dB	
3 GHz to 5 GHz	—12 dB	
5 GHz to 10.5 GHz	–12 dB	
10.5 GHz to 11.5 GHz	–10 dB	
11.5 GHz to 20 GHz	—8 dB	

Load match

300 kHz to 10 MHz		—9 dB
10 MHz to 1 GHz	–20 dB	
1 GHz to 3 GHz	–20 dB	
3 GHz to 5 GHz	–18 dB	
5 GHz to 11.5 GHz	–12 dB	
11.5 GHz to 16 GHz	—7 dB	
16 GHz to 20 GHz	–7.5 dB	

Crosstalk²

300 kHz to 5 MHz	–70 dB
5 MHz to 10 MHz	–100 dB
10 MHz to 45 MHz	–110 dB
45 MHz to 4 GHz	–122 dB
4 GHz to 6 GHz	–123 dB
6 GHz to 10.5 GHz	–120 dB
10.5 GHz to 15 GHz	–115 dB
15 GHz to 20 GHz	–110 dB

1. Specifications apply over environmental temperature of 25 °C \pm 5 °C with less than 1 °C variation from calibration temperature.

2. Measurement conditions: normalized to a thru, measured with two shorts, 10 Hz IF bandwidth, averaging factor of 8, alternate mode source power set to the lesser of the maximum power out or the maximum receiver power.

Table 6. Test port output¹

B 1.4	Specifications		Typicals	
Description	Option 240	Option 245	Option 240	Option245
Frequency range				
	300 KHz to 20	GHz		
Nominal power				
	—5 dB	8 dB	Preset power; attenuator swite point 10 dB below nominal pow	
Frequency resolution	on			•
	1 Hz			
CW accuracy				
	±1 ppm			
Frequency stability				
			±0.05 ppm. –10)° to 70° C
			±0.1 ppm/yr maximum	

Specif	fications	Туріс	als
Option 240	Option 245	Option 240	Option245
ey 🛛			
al power in ran	ge O		
		±1.0 dB	±1.0dB
±1.0 dB	±1.0 dB		
±1.5 dB	±1.5 dB		
±2.5 dB	±2.5 dB		
		+8 dBm	+8 dBm
+8 dBm	+8 dBm	+12 dBm	+11 dBm
+6 dBm	+6 dBm	+10 dBm	+9 dBm
+3 dBm	+1 dBm	+8 dBm	+6 dBm
0 dBm	–2 dBm	+5 dBm	+3 dBm
–3 dBm	–8 dBm	+2 dBm	−1 dBm
Y			
nly. Ports 2, 3, 4 p	performance is Typi	cal. Test is at the no	ominal power level
		±2.0 dB	±2.0 dB
±2.0 dB	±2.0 dB		
±1.5 dB	±1.5 dB		
(ALC)			
aximum-leveled	power and decreas	ses by the dB amou	int specified here.
		35 dB	35 dB
33 dB	33 dB		
31 dB	31 dB		
28 dB	26 dB		
25 dB	23 dB		
22 dB	17 dB		
0.01 dB	0.01 dB		
	Option 240 y al power in ran ±1.0 dB ±1.5 dB ±2.5 dB +8 dBm +6 dBm +3 dBm 0 dBm -3 dBm y ty ty ty ty ty ty ty ty ty	*Y ial power in range 0 ±1.0 dB ±1.0 dB ±1.5 dB ±1.5 dB ±2.5 dB ±2.5 dB +8 dBm +6 dBm +6 dBm +6 dBm +3 dBm +1 dBm 0 dBm -2 dBm -3 dBm -8 dBm // oly. Ports 2, 3, 4 performance is Typi ±2.0 dB ±2.0 dB ±1.5 dB ±1.5 dB ±1.5 dB ±1.5 dB ±1.5 dB ±1.5 dB ±1.5 dB ±1.5 dB ±2.0 dB ±2.0 dB ±2.0 dB ±2.0 dB ±2.0 dB ±1.5 dB ±1.5 dB ±1.5 dB ±1.5 dB ±1.5 dB ±2.0 dB ±1.5 dB ±2.0 dB ±1.5 dB ±2.0 dB 1.7 dB	Option 240 Option 245 Option 240 ial power in range 0 ±1.0 dB ±1.0 dB ±1.0 dB ±1.0 dB ±1.0 dB ±1.5 dB ±1.5 dB ±1.5 dB ±2.5 dB ±2.5 dB ±2.5 dB +8 dBm +8 dBm +12 dBm +6 dBm +6 dBm +10 dBm +3 dBm +1 dBm +8 dBm 0 dBm -2 dBm +5 dBm -3 dBm -8 dBm +2 dBm // otbm -2 dBm +5 dBm -3 dBm -2 dBm +5 dBm -3 dBm -8 dBm +2 dBm // otbm -2 dBm +5 dBm -3 dBm -2 dBm +5 dBm -3 dBm -2 dBm +2 dBm // otbm -2 dBm +2 dBm // otbm -2 dB ±2.0 dB ±1.5 dB ±1.5 dB 1 (ALC)

Table 6. Test port output¹ (Continued)

B 1.4	Specif	cations	Typical	ls
Description	Option 240	Option 245	Option 240	Option245
Power range				
300 kHz to 10 MHz			-27 to +8 dBm	–87 to +8 dBm
10 MHz to 45 MHz			-27 to +12 dBm	87 to +11 dBm
45 MHz to 4 GHz			-27 to +12 dBm	87 to +11 dBm
4 GHz to 6 GHz			-27 to +10 dBm	87 to +9 dBm
6 GHz to 10.5 GHz			-27 to +8 dBm	87 to +6 dBm
10.5 GHz to 15 GHz			-27 to +5 dBm	87 to +3 dBm
15 GHz to 20 GHz			-27 to +2 dBm	–87 to –1 dBm
Power settings				
Minimum power set	ting		–30 dBm	–90 dBm
Maximum power set	ting		+20 dBm	+20 dBm
Harmonics (2nd or 3	Brd) at maximun	n output power		
In-band source harm	ionics			
300 kHz to 10 MHz			–17 dBc	
10 MHz to 1 GHz			–17 dBc	
1 GHz to 20 GHz			–20 dBc	
Non-harmonic spur	ious (at nominal	output power)		
300 kHz to 20 GHz			-50 dBc for offset	frequency > 1 kHz

Typical performance

Phase noise (Nominal power at test port)			
	10 kHz Offset	100 kHz Offset	1 MHz Offset
300 kHz to 10 MHz	−86 dBc/Hz	−86 dBc/Hz	–95 dBc∕Hz
10 MHz to 1.5 GHz	−86 dBc/Hz	–91 dBc/Hz	–95 dBc∕Hz
1.5 GHz to 3.125 GHz	−83 dBc/Hz	–91 dBc/Hz	–95 dBc∕Hz
3.125 GHz to 6.25 GHz	−77 dBc/Hz	−85 dBc/Hz	–89 dBc∕Hz
6.25 GHz to 12.5 GHz	−71 dBc/Hz	–79 dBc/Hz	–83 dBc∕Hz
12.5 GHz to 20 GHz	−65 dBc/Hz	–73 dBc/Hz	−77 dBc/Hz

1. Performance specified on Port 1 only. Ports 2 , 3, and 4 performance is a typical. Test reference is at the nominal power level.

Table 7: Test port input

Description	Specification	Typicals
Description	Options 240, 245	Option 240, 245
Test port noise floor		
Total average (rms) noise po	ower calculated as the mean value of a line	ar magnitude trace expressed in dBr
10 Hz IF bandwidth		
300 kHz to 10 MHz		< –103 dBm
10 MHz to 500 MHz	< –112 dBm	< –116 dBm
500 MHz to 4 GHz	< –112 dBm	< –120 dBm
4 GHz to 10.5 GHz	< –112 dBm	< –119 dBm
10.5 GHz to 15 GHz	< –107 dBm	< –114 dBm
15 GHz to 20 GHz	< –106 dBm	< –114 dBm
1 KHz IF bandwidth		
300 kHz to 10 MHz		< –83 dBm
10 MHz to 500 MHz	< –92 dBm	< –96 dBm
500 MHz to 4 GHz	< –92 dBm	< –100 dBm
4 GHz to 10.5 GHz	< –92 dBm	< –99 dBm
10.5 GHz to 15 GHz	< –87 dBm	< –94 dBm
15 GHz to 20 GHz	< –86 dBm	< –94 dBm
Direct receiver access inpu	ıt noise floor (Option 245 only)	
Total average (rms) noise po	ower calculated as the mean value of a line	ar magnitude trace expressed in dBr
10 Hz IF bandwidth		
		< 110 dPm

300 kHz to 10 MHz		< –119 dBm
10 MHz to 500 MHz	< –128 dBm	< –132 dBm
500 MHz to 4 GHz	< –128 dBm	< –136 dBm
4 GHz to 10.5 GHz	< –128 dBm	< –135 dBm
10.5 GHz to 15 GHz	< –123 dBm	< –130 dBm
15 GHz to 20 GHz	< –122 dBm	< –130 dBm
1 KHz IF bandwidth		
300 kHz to 10 MHz		< –99 dBm
10 MHz to 500 MHz	< –108 dBm	<
500 MHz to 4 GHz	< –108 dBm	< –116 dBm
4 GHz to 10.5 GHz	< –108 dBm	< –115 dBm
10.5 GHz to 15 GHz	< –103 dBm	< –110 dBm
15 GHz to 20 GHz	< –102 dBm	<

D	Specif	ication		Typicals
Description	Options 240, 245		Option 240, 245	
Compression level (at +	-8 dBm except as n	oted)		
	Power	Compression	Power	Compression
300 kHz to 10 MHz			+5 dBm	0.10 dB
10 MHz to 50 MHz	+8 dBm	0.35 dB		
50 MHz to 1 GHz	+8 dBm	0.35 dB		
1 GHz to 8 GHz	+8 dBm	0.25 dB		
8 GHz to 12.5 GHz	+8 dBm	0.30 dB		
12.5 GHz to 20 GHz	+8 dBm	0.55 dB		
Test port compression a	nt 0.1 dB			
300 kHz to 10 MHz			+5 dBm	
10 MHz to 1 GHz			+9 dBm	
1 GHz to 12.5 GHz			+10 dBm	
12.5 GHz to 20 GHz			+9 dBm	

Table 7. Test port input (Continued)

Description -	Specifi		Typica	
-	Option 240	Option 245	Option 240	Option245
Trace noise magnitu				
Ratioed measuremen		r at test port.		
100 kHz IF bandwidt	h			
300 kHz to 10 MHz			.015 dB rms.	.030 dB rms
10 MHz to 10.5 GHz	.006 dB rms	.008 dB rms	.004 dB rms.	.005 dB rms
10.5 GHz to 20 GHz	.010 dB rms	.014 dB rms	.007 dB rms.	.009 dB rms
600 kHz IF bandwidt	h			
300 kHz to 10 MHz			.015 dB rms.	.030 dB rms
10 MHz to 10.5 GHz			.013 dB rms.	.015 dB rms
10.5 GHz to 20 GHz			.017 dB rms.	.023 dB rms
100 kHz IF bandwidt				
Measured at maximu	im specified pow	/er		
300 kHz to 10 MHz			.005 dB rms.	.010 dB rms
10 MHz to 2 GHz			.001 dB rms.	.003 dB rms
2 GHz to 10.5 GHz			.002 dB rms.	.003 dB rms
10.5 GHz to 20 GHz			.006 dB rms.	.009 dB rms
T				
Trace noise phase				
Ratioed measuremen		r at test port.		
100 kHz IF bandwidt	n		110	100 1
300 kHz to 10 MHz	05.1	07.1	.110 deg rms.	.180 deg rms
10 MHz to 10.5 GHz	.05 deg rms	.07 deg rms	.025 deg rms.	.035 deg rms
10.5 GHz to 20 GHz	.08 deg rms	.10 deg rms	.050 deg rms.	.060 deg rms
600 kHz IF bandwidt	h			400.1
300 kHz to 10 MHz			.110 deg rms.	.180 deg rms
10 MHz to 10.5 GHz			.080 deg rms.	.100 deg rms
10.5 GHz to 20 GHz	-		.120 deg rms.	.160 deg rms
100 kHz IF bandwidt				
Measured at maximu	im specified pow	/er		
300 kHz to 10 MHz			.040 deg rms.	.050 deg rms
10 MHz to 2 GHz			.007 deg rms.	.012 deg rms
2 GHz to 10.5 GHz			.012 deg rms.	.015 deg rms
10.5 GHz to 20 GHz			.040 deg rms.	.060 deg rms
Deference lavel was	nitudo			
Reference level mag	±200 dB	T200 T		
Range Resolution		±200 dB		
nesolution	.001 dB	.001 dB		
Reference level phas	se			
Range	±500°	±550°		
Resolution	.01°	.01°		
		.01		
Stability magnitude				
Stability as defined a	s a ratio measur	ement made at the	e test port.	
300 kHz to 10 MHz				dB/° C
10 MHz to 2 GHz				dB/° C
2 GHz to 4 GHz				dB/° C
4GHz to 16 GHz				dB/°C
16 GHz to 19 GHz				dB/°C
10 0112 10 10 0112			±.020	ub/ 0

Table 7. Test port input (Continued)

D	Specifications		Typicals	
Description	Option 240	Option 245	Option 240	Option245
Stability phase				
Stability as defined a	as a ratio measu	rement made at th	ne test port.	
300 kHz to 10 MHz			±.360) dB/° C
10 MHz to 45 MHz			±.020 dB/° C	
45 MHz to 500 MHz			±.030 dB/° C	
500 MHz to 2 GHz			±.050) dB/° C
2 GHz to 4 GHz			±.100) dB/° C
4GHz to 8 GHz			±.150) dB/° C
8 GHz to 16 GHz			±.300) dB/° C
16 GHz to 20 GHz			±.350) dB/° C

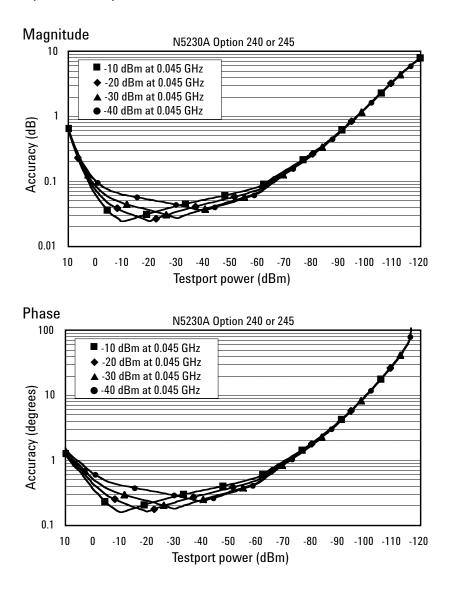
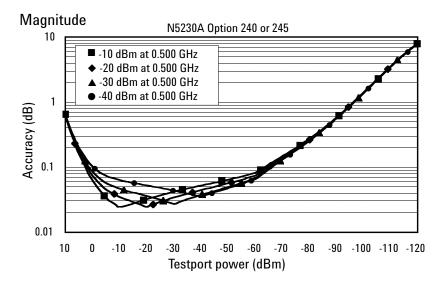

Description	Typicals		
Description	Option 240	Option245	
Damage input level			
Test port 1, 2, 3, and 4	+27 dBm or ±16 VDC	+27 dBm or ±16 VDC	
Receivers R, A, B, C, D		+15 dBm or ±16 VDC	
Source out (reference)		+20 dBm or ±16 VDC	
Source out (test ports)		+27 dBm or ±16 VDC	
Coupler thru		+27 dBm or ±16 VDC	
Coupler arm		+15 dBm or ±0 VDC	

Table 8. Dynamic Accuracy (specification)

Accuracy of the test port input power reading relative to the reference input power level. Dynamic accuracy is verified with the following measurements:


- Compression over frequency
- IF linearity at a single frequency of 1.195 GHz using a reference level of -20 dBm for an input power range of 0 to -110 dBm

Dynamic Accuracy 0.045 GHz

Table 8. Dynamic Accuracy (continued)

Dynamic Accuracy 0.500 GHz

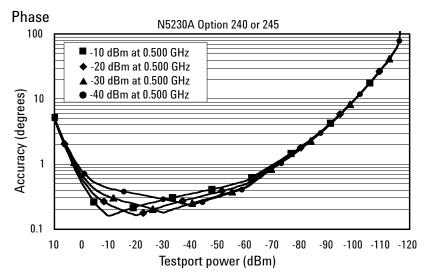
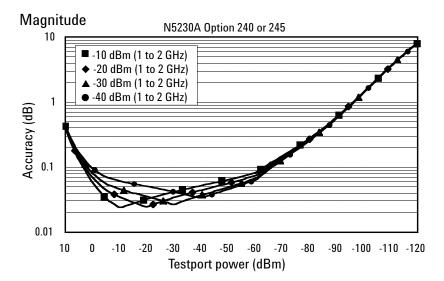
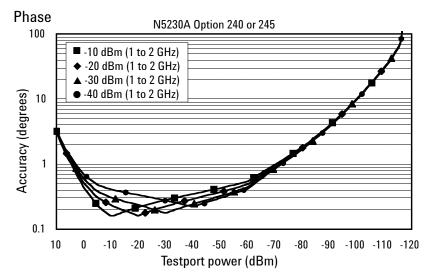
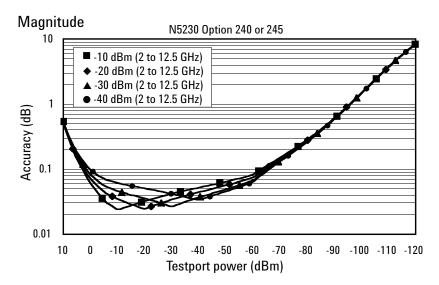




Table 8. Dynamic Accuracy (continued)


Dynamic Accuracy 1 to 2 GHz

Dynamic Accuracy 2 to 12.5 GHz

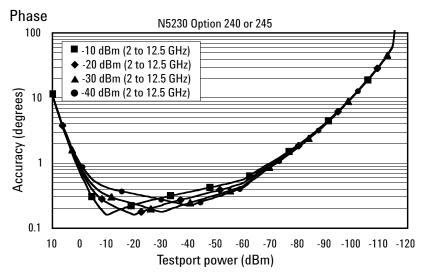
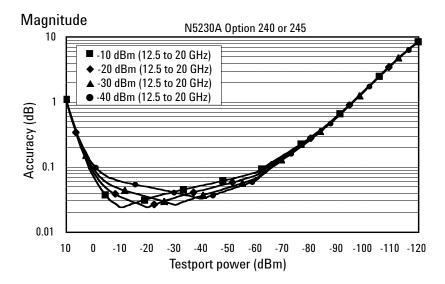



Table 8. Dynamic Accuracy (continued)

Dynamic Accuracy 12.5 to 20 GHz

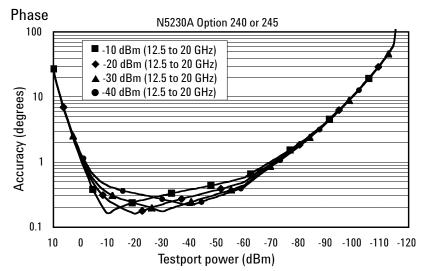
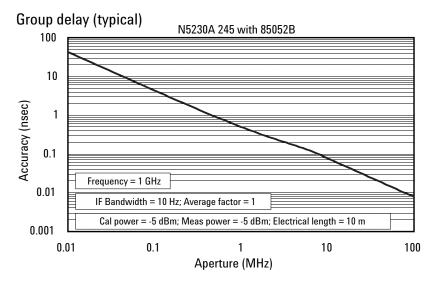



Table 9. Test port input (group delay)¹

Description	Specification	Supplemental information (typ.)
Aperture (selectable)		(frequency span)/(number of points –1)
Maximum aperture		20% of frequency span
Range		0.5 x (1/minimum aperture)
Maximum delay		Limited to measuring no more than 180° of
		phase change within the minimum aperture
Accuracy		See graph below. Char.

The following graph shows characteristic group delay accuracy with full 2-port calibration and a 10 Hz IF bandwidth. Insertion loss is assumed to be < 2 dB and electrical length to be ten meters.

For any S_{ij} group delay measurement, S_{ii} = 0, S_{ij} = 0, S_{kl} = 0 for all $kl \neq ij$

In general, the following formula can be used to determine the accuracy, in seconds, of specific group delay measurement:

±Phase Accuracy (deg)/[360° Aperture (Hz)]

Depending on the aperture and device length, the phase accuracy used is either incremental phase accuracy or worst case phase accuracy.

General Information

Table 10. Miscellaneous information

Description	Specification	Supplemental information
System IF bandwidth range		1 Hz to 600 kHz, nominal
CPU		Intel® 500 MHz Pentium® III

Table 11. Front panel information

Description	Supplemental information	
RF connectors		
Туре	Option 240 or 245: 3.5 mm (male), 50 ohm, (nominal)	
Center pin recession	0.002 in. (characteristic)	
Display		
Size	21.3 cm (8.4 in) diagonal color active matrix LCD;	
	640 (horizontal) X 480 (vertical) resolution	
Refresh rate	Vertical 59.83 Hz; Horizontal 31.41 kHz	
Display range		
Magnitude	±500 dB (at 20 dB/div), max	
Phase	±500°, max	
Polar	10 pUnits, min	
	1000 Units, max	
Display resolution		
Magnitude	0.001 dB/div, min	
Phase	0.01°/div, min	
Marker resolution		
Magnitude	0.001 dB, min	
Phase	0.01°, min	
Polar	0.01 mUnit, min; 0.01°,min	

Description	Supplemental information
10 MHz Reference in	
Connector	BNC, female
Input frequency	10 MHz ± 10 ppm, typical
Input level	–15 dBm to +20 dBm, typical
Input impedance	200 Ω, nom.
IO MHz Reference out	200 \$2, 11011.
Connector	BNC, female
Output frequency	10 MHz ± 1 ppm, typical
Signal type	Sine Wave, typical
Output level	+10 dBm \pm 4 dB into 50 Ω , typical
Output impedance	50Ω , nominal
Harmonics	<pre></pre>
	< -40 dBc, typical
/GA Video output Connector	
	15-pin mini D-Sub; Drives VGA compatible monitors
Devices supported	
	Resolutions:
Flat panel (TFT)	1024 X 768, 800 X 600, 640 X 480
Flat panel (DSTN)	800 X 600, 640 X 480
CRT monitor	1280 X 1024, 1024 X 768, 800 X 600, 640 X 480
	Simultaneous operation of the internal and external displays is allowed,
	but with 640 X 480 resolution only. If you change resolution, you can only
	view the external display (internal display will "white out").
est set IO	
	25-pin D-Sub connector, female, available for external test set control
Aux IO	
	25-pin D-Sub connector, male, analog and digital IO
landler 10	
	36-pin parallel I/O port; all input/output signals are default set to
	negative logic; can be reset to positive logic via GPIB command
3PIB	
	24-pin D-sub (Type D-24), female; compatible with IEEE-488.
Parallel port (LPT1)	
	25-pin D-Sub miniature connector, female; provides connection to
	printers or any other parallel port peripherals
Serial Port (COM 1)	
	9-pin D-Sub, male; compatible with RS-232
JSB Port	
	One port on front panel and five ports on rear panel. Universal Serial Bus
	jack, Type A configuration (4 contacts inline, contact 1 on left); female
Contact 1	Vcc: 4.75 to 5.25 VDC, 500 mA, maximum
Contact 2	-Data
Contact 3	+Data
Contact 4	Ground
AN	
	10/100BaseT Ethernet, 8-pin configuration; auto selects between the
	two data rates
.ine power A third-wire ground is required.	
Frequency	50/60/400 Hz
Voltage	120/240 VAC (Power supply is auto switching.)
Max	500 Watts
iviak	συυ γναιιδ

Table 13. Rear panel information

Note: Option H08 and Option H11 are not available with the N5230A network analyzer.

Description	Supplemental information			
General environmental				
RFI/EMI susceptibility	Defined by CISPR Pub. 11,	Group 1, Clas	s A, and I	EC 50082-1
ESD	Minimize by using static-safe work procedures and an antistatic bench ma			
Dust	Minimize for optimum relia	bility		
Operating environment				
Temperature	0 °C to +40 °C			
	Instrument powers up and			
	temperature range (except	for "source u	unleveled"	error message that
	may occur at temperatures		specified p	performance
	temperature range of 25 \pm			
Error-corrected temperature range	23 °C ± 3 °C with less than	1 °C deviati	on from ca	libration temp.
Humidity	5% to 95% at +40 °C			
Altitude	0 to 4500 m (14,760 ft.)			
Non-operating storage environment				
Temperature	–40 °C to +70 °C			
Humidity	0% to 90% at +65 °C (non-o	condensing)		
Altitude	0 to 4500 m (14,760 ft.)			
Cabinet dimensions				
		Height	Width	Depth
Excluding front and rear panel hardw	vare and feet		426 mm	.=,
		10.5 in	16.75	16.8 in
As shipped - includes front panel co	nnectors,		435 mm	
rear panel bumpers, and feet.		11 in	17.10 in	
As shipped plus handles			458 mm	
		11 in	18 in	19.7 in
As shipped plus rack-mount flanges			483 mm	
		11 in	19 in	18.5 in
As shipped plus handles and rack-m	ount flanges	280 mm		
		11 in	19 in	19.7 in
Weight				
Net				
N5230A	24.9 kg (55 lb), nominal			
Shipping				
N5230A	36.3 kg (80 lb), nominal			

Table 13. Analyzer environment and dimensions

Measurement Throughput Summary

Table 14. Typical cycle time¹ (ms) for measurement completion

		Nu	nber of Po	ints	
	201	401	801	1601	16,001
Start 8 GHz, stop 18 GHz, 6	00 kHz IF bandwid	lth			
Uncorrected	26.2	26.7	27.6	29.2	76.5
4-Port cal	93.0	104.1	125.2	164.0	939.6
Start 300 kHz, stop 10 GHz,	600 kHz IF bandw	vidth			
Uncorrected	24.8	28.0	30.4	35.0	91.8
4-Port cal	87.5	109.0	134.6	180.5	990.8
Start 300 kHz, stop 20 GHz,	600 kHz IF bandw	vidth			
Uncorrected	38.3	40.2	43.6	46.6	93.8
4-Port cal	140.2	158.3	190.0	224.2	1012.3
Start 8 GHz, stop 18 GHz, 1	00 kHz IF bandwid	lth			
Uncorrected	43.1	56.9	60.9	62.1	193.4
4-Port cal	160.4	222.2	248.8	274.5	1291.1
Start 300 kHz, stop 10 GHz,	100 kHz IF bandw	vidth			
Uncorrected	41.8	48.3	51.1	53.7	209.9
4-Port cal	155.1	180.0	214.2	260.5	1362.7
Start 300 kHz, stop 20 GHz,	100 kHz IF bandw	vidth			
Uncorrected	51.4	76.4	94.0	99.8	211.4
4-Port cal	190.3	292.4	379.8	419.8	1378.7
Start 8 GHz, stop 18 GHz, 5	0 kHz IF bandwidt	h			
Uncorrected	47.1	75.1	94.6	97.3	380.9
4-Port cal	171.6	290.1	381.0	410.0	1894.4
Start 300 kHz, stop 10 GHz,	50 kHz IF bandwi	dth			
Uncorrected	49.1	67.2	72.7	75.9	395.1
4-Port cal	180.0	261.4	293.1	330.6	1941.2
Start 300 kHz, stop 20 GHz,	50 kHz IF bandwi	dth			
Uncorrected	54.9	87.1	131.2	154.4	396.3
4-Port cal	207.0	337.7	523.9	633.6	1948.2

 $^{1. \}label{eq:sweep} \mbox{ 1. Includes sweep time, retrace time and band-crossing time. Analyzer display turned off with DISPLAY:ENABLE OFF. Add 21 ms for display on. Data for one trace (S_{11}) measurement.$

Table 15. Cycle Time vs IF Bandwidth

Applies to the preset condition (201 points, correction off) except for the following changes:

- CF = 10 GHz
 Span = 100 MHz
 Display off (add 21 ms for display on)

Description	Typical performance		
IF Bandwidth (Hz)	Cycle time (ms) ¹	Trace noise	
600,000	7.523394495	0.003533948	
360,000	7.54179941	0.002688865	
280,000	7.5703125	0.002287365	
200,000	7.71344	0.002102872	
150,000	7.762206897	0.001696417	
100,000	7.806733333	0.001284263	
70,000	7.874966555	0.001170092	
50,000	9.076777778	0.000987238	
30,000	11.46182377	0.0008445	
20,000	14.72636574	0.000647383	
15,000	17.5863125	0.000534657	
10,000	28.64310448	0.000477914	
7000	37.16706481	0.000439644	
5000	48.58746512	0.000350175	
3000	72.52639344	0.00030881	
2000	102.2277778	0.000279538	
1500	130.7245	0.00015128	
1000	218.5535	0.000154337	
700	294.1385333	0.000135211	
500	399.9245455	0.000125675	
300	636.411	0.000103409	
200	932.7632		
100	1826.966667		
30	6004.446		
10	17903.564		
1	178398.611		

^{1.} Cycle time includes sweep and retrace time.

Table 16. Cycle time vs number of points¹

Applies to the preset condition (correction off) except for the following changes:

- CF = 10 GHz
- Span = 100 MHz
- Display off (add 21 ms for display on)

IF Bandwidth (Hz)	Number of points	Cycle time (ms) ²
30,000	3	6.7
	11	7.4
	51	6.9
	101	7.8
	201	11.2
	401	18.3
	801	32.4
	1,601	59.4
	6,401	224.7
	16,001	556.9
100,000	3	6.7
	11	6.6
	51	6.8
	101	7
	201	7.5
	401	9
	801	13.5
	1,601	22.9
	6,401	75.3
	16,001	180.3
600,000	3	6.5
	11	6.6
	51	6.8
	101	6.9
	201	7.3
	401	8.1
	801	9.4
	1,601	12
	6,401	27.7
	16,001	59.3

1. Cycle time includes sweep and retrace time.

Table 17. Data transfer time (ms)¹

	N	umber of poi	nts
201	401	1601	16,001
ecuted on externa	I PC)		
7	12	43	435
12	22	84	856
64	124	489	5054
the analyzer)			
1	2	3	30
2	2	4	40
29	56	222	2220
the analyzer)			
< 0.4	0.4	0.5	1.9
0.7	1	3	32
xecuted on extern	al PC)		
< 0.8	1	1.5	7.1
1.8	2.7	8.5	80
	the analyzer) <pre>cecuted on externa 7 12 64 the analyzer) 1 2 29 the analyzer) < 0.4 0.7 xecuted on extern < 0.8</pre>	201 401 secuted on external PC) 7 12 7 12 22 64 124 12 the analyzer) 2 2 2 2 2 29 56 56 0.4 0.4 0.7 1 2 2 29 56 the analyzer) < 0.4	Total PC) 7 12 43 12 22 84 64 124 489 the analyzer) 1 2 3 2 2 4 29 56 222 the analyzer) < 0.4

Note: Specifications for recall and sweep speed are not provided for the N5230A analyzers.

Specifications: Front-Panel Jumpers

Table 18: Measurement receiver inputs (rcvr A In, rcvr B In, rcvr C in, rcvr D in) 0.1 dB Typical compression

		Typical	
Description	Specification	Option 245	
Maximum input level			
300 kHz to 10 MHz		–11 dBm	
10 MHz to 1 GHz		–7 dBm	
1 GHz to 12.5 GHz		—6 dBm	
12.5 GHz to 20 GHz		–7 dBm	
Damage level			
N5230A		+15 dBm	
Maximum DC level			
N5230A		±16 V	

Table 19: Reference receiver input (rcvr in) at maximum specified output power

Specification	Typical Option 245	
	•	
	–15 dBm	
	–16 dBm	
	–20 dBm	
	–21 dBm	
	–27 dBm	
	+15 dBm	
	±16 V	
	Specification	Specification Option 245 -15 dBm -15 dBm -15 dBm -15 dBm -15 dBm -15 dBm -15 dBm -16 dBm -20 dBm -21 dBm -21 dBm +15 dBm

Table 20: Reference output (source out) at maximum specified output power

at maximum spec	meu output powei		
		Typical	
Description	Specification	Option 245	
Maximum output level			
300 kHz to 10 MHz		–15 dBm	
10 MHz to 45 MHz		–15 dBm	
45 MHz to 500 MHz		–15 dBm	
500 MHz to 4 GHz		–15 dBm	
4 GHz to 6 GHz		–15 dBm	
<u>6 GHz to 10.5 GHz</u>		–20 dBm	
10.5 GHz to 15 GHz		–21 dBm	
15 GHZ to 20 GHz		–27 dBm	
Damage level			
N5230A		+27 dBm	
Maximum DC level			
N5230A		±16 V	

Table 21: Source outputs (port 1 source out, port 2 source out, port 3 source out, port 4 source out) at maximum specified output power

		Typical	
Description	Specification	Option 245	
Maximum output level			
300 kHz to 10 MHz		+10 dBm	
10 MHz to 45 MHz		+10 dBm	
45 MHz to 500 MHz		+10 dBm	
500 MHz to 4 GHz		+10 dBm	
4 GHz to 6 GHz		+9 dBm	
<u>6 GHz to 10.5 GHz</u>		+4 dBm	
10.5 GHz to 15 GHz		+1 dBm	
15 GHZ to 20 GHz		–4 dBm	
Damage level			
N5230A		+27 dBm	
Maximum DC level			
N5230A		±16 V	

Table 22: Coupler inputs (port 1 cplr thru, port 2 cplr thru, port 3 cplr thru, port 4 cplr thru) Insertion loss of coupler thru

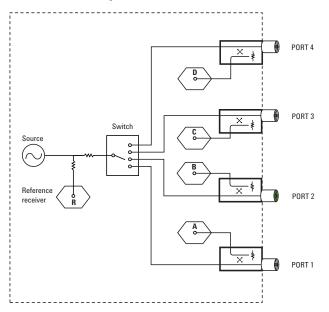
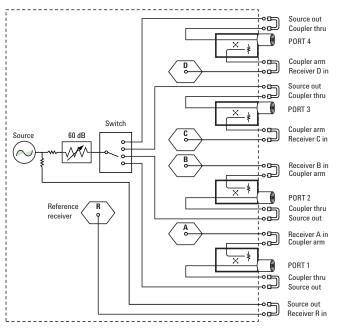

Description	Specification	Typical Option 245	
Insertion loss to test port	t		
300 kHz to 10 MHz		1.5 dB	
10 MHz to 45 MHz		1.5 dB	
45 MHz to 500 MHz		1.5 dB	
500 MHz to 4 GHz		2.0 dB	
4 GHz to 6 GHz		2.5 dB	
6 GHz to 10.5 GHz		2.5 dB	
10.5 GHz to 15 GHz		3.0 dB	
15 GHZ to 20 GHz		3.0 dB	
Damage level			
N5230A		+27 dBm	
Maximum DC level			
N5230A		±16 V	

Table 23: Coupler outputs (port 1 cplr arm, port 2 cplr arm, port 3 cplr arm, port 4 cplr arm)


	Typical		
Description	Specification	Option 245	
Damage level			
N5230A		+15 dBm	
Maximum DC level			
N5230A		0 V	

Test Set Block Diagrams

N5230A Option 240 (standard test set and standard power range) network analyzer

N5230A Option 245 (configurable test set and extended power range) network analyzer

Web Resources

Visit our Web sites for additional product information and literature.

PNA-L network analyzers: www.agilent.com/find/pnal

PNA microwave network analyzers: www.agilent.com/find/pna

Electronic calibration (ECal): www.agilent.com/find/ecal

Test and measurement solutions: www.agilent.com/find/accessories

www.agilent.com

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office.

Phone or Fax

Korea: (tel) (080) 769 0800 (fax) (080)769 0900 Latin America: (tel) (305) 269 7500 Taiwan: (tel) 0800 047 866 (fax) 0800 286 331 Other Asia Pacific Countries: (tel) (65) 6375 8100 (fax) (65) 6755 0042 Email: tm_ap@agilent.com

The complete list is available at: www.agilent.com/find/contactus

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2003, 2004, 2005 Printed in USA, July 21, 2005 5989-1695EN

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Intel[®] and Pentium[®] are US registered trademarks of Intel Corporation.

