2306-VS Dual Channel Battery/Charger Simulator

OUTPUT #2 (CHARGER)

DC VOLTAGE OUTPUT (2 YEARS, 23°C ± 5°C)

OUTPUT VOLTAGE: 0 to +15VDC.

OUTPUT ACCURACY: $\pm (0.05\% + 10mV)$.

PROGRAMMING RESOLUTION: 10mV.

READBACK ACCURACY1: ±(0.05% + 3mV).

READBACK RESOLUTION: 1mV.

OUTPUT VOLTAGE SETTLING TIME: 5ms to within stated accuracy.

LOAD REGULATION: ±(0.01% + 2mV).

LINE REGULATION: ±(0.5mV).

STABILITY²: $\pm (0.01\% + 0.5 \text{mV})$.

MEASUREMENT TIME CHOICES: 0.01 to 10 PLC7, in 0.01PLC steps.

AVERAGE READINGS: 1 to 10.

READING TIME^{1, 8, 9}: 31ms, typical.

TRANSIENT RESPONSE: Transient Recovery Time¹³ Transient Voltage Drop

High Bandwidth Low Bandwidth <50µs3 or <80µs4 <60us3 or <100us4 <120mV³ or <150mV⁴

<160mV³ or <200mV⁴

REMOTE SENSE: 1V max. drop in each lead. Add 2mV to the voltage load regulation specification for each 1V change in the negative output lead due to load current change. Remote sense required. Integrity of connection continually monitored. If compromised, output will turn off automatically once settable window (± 0 to ± 8 volts) around normal voltage exceeded.

DC CURRENT (2 YEARS, 23°C ± 5°C)

CONTINUOUS AVERAGE OUTPUT CURRENT:

Channel #1 (Battery) OFF:

I = 50W/(Vset channel 2 + 6V); 5A max.

Channel #1 (Battery) ON:

I = (50W - Power consumed by channel #1)/(Vset channel 2 + 6V); 5A max.The power consumed by channel #1 is calculated as:

Channel #1 sourcing current:

Power consumed = (Vset channel 1 + 6V) x (current supplied) Channel #1 sinking current:

Power consumed = $5 \times (\text{sink current})$

Peak currents can be a maximum of 5A provided the average current is within the above limits.

CONTINUOUS AVERAGE SINK CURRENT:

Channel #1 (Battery) OFF:

0-5V: 3A max.

5-15V: Derate 0.2A per volt above 5V. Compliance setting controls sinking.

Channel #1 (Battery) ON:

Available current = (50W - Power consumed by channel #1)/5; 3A max. (0-5V).Derate 0.2A per volt above 5V.

SOURCE COMPLIANCE ACCURACY: ±(0.16% + 5mA)5.

PROGRAMMED SOURCE COMPLIANCE RESOLUTION: 1.25mA.

READBACK ACCURACY ¹ :	5A Range: $\pm (0.2\% + 200\mu A)$
	5mA Range: $\pm (0.2\% + 1\mu A)$.
READBACK RESOLUTION:	5A Range: 100µA.
	5mA Range: 0.1µA.

LOAD REGULATION: ±(0.01% + 1mA).

LINE REGULATION: ±(0.5mA).

STABILITY⁴: ±(0.01% + 50µA).

MEASUREMENT TIME CHOICES: 0.01 to 10 PLC7, in 0.01PLC steps. AVERAGE READINGS: 1 to 10.

READING TIME^{1, 8, 9}: 31ms, typical.

PULSE CURRENT MEASUREMENT OPERATION

TRIGGER LEVEL: 5mA to 5A, in 5mA steps.

TRIGGER DELAY: 0 to 100ms, in 10µs steps.

INTERNAL TRIGGER DELAY: 15µs.

HIGH/LOW/AVERAGE MODE:

Measurement Aperture Settings: 33.3µs to 833ms, in 33.3µs steps. Average Readings: 1 to 100.

PULSE CURRENT MEASUREMENT ACCURACY¹¹ (2 Years, 23°C ±5°C):

Aperture	Accuracy ±(% reading + offset + rms noise ¹⁰)
<100 µs	$0.2\% + 900 \ \mu A + 2mA$
100 μs – 200 μs	$0.2\% + 900 \ \mu A + 1.5 mA$
200 μs – 500 μs	$0.2\% + 900 \ \mu A + 1 m A$
500 μ s – <1 PLC	$0.2\% + 600 \ \mu A + 0.8 mA$
1 PLC ¹²	$0.2\% + 400 \ \mu A + 0 mA$
>1 PLC	$0.2\% + 400 \ \mu A + 100 \ \mu A$

BURST MODE CURRENT MEASUREMENT

MEASUREMENT APERTURE: 33.3µs to 833ms, in 33µs steps. CONVERSION RATE: 2040/second at 33.3µs meas. aper., typical. INTERNAL TRIGGER DELAY: 15µs with 33µs. NUMBER OF SAMPLES: 1 to 5000

TRANSFER SAMPLES ACROSS IEEE BUS IN BINARY MODE: 4800 bytes/s, typical.

LONG INTEGRATION MODE CURRENT MEASUREMENT

MEASUREMENT TIME⁶: 850ms (840ms) to 60 seconds in 1ms steps.

DIGITAL VOLTMETER INPUT (2 YEARS, 23°C ± 5°C)

INPUT VOLTAGE RANGE: -5 to +30VDC.

INPUT IMPEDANCE: 2MΩ typical.

MAXIMUM VOLTAGE (either input terminal) WITH RESPECT TO OUTPUT LOW: -5V, +30V.

READING ACCURACY¹: ±(0.05% + 3mV).

READING RESOLUTION: 1mV.

CONNECTOR: HI and LO input pair part of Output #2's terminal block.

MEASUREMENT TIME CHOICES: 0.01 to 10 PLC⁷, in 0.01PLC steps.

AVERAGE READINGS: 1 to 10.

READING TIME^{1, 8, 9}: 31ms, typical.

VOLTAGE SETTLING TIMES

Voltage Step Settling Times – Typical			
Increasing Voltage	10-90% Rise Time	Settling Time	
Voltage step $\leq 7V$	10µs	100µs	
Voltage step > 7V	10µs to 1.2ms	100µs to 1.5ms	
Decreasing Voltage	10-90% Fall Time	Settling Time	
0V < Voltage step < 15V	5µs to 40µs	50µs to 200µs	

NOTE: Times are under no load condition and settling times defined at +/- 2% of step size.

2306-VS Dual Channel Battery/Charger Simulator

VOLTAGE STEPPING ONLY

TEST CONDITIONS:

- 1. Trigger external is enabled on both channels.
- 2. Only a single channel is externally triggered during the sequence while remaining channel stays idle.
- 3. Times based on 0 programmable user delay.

AUTO MEASUREMENT ONLY

TEST CONDITIONS:

- 1. Trigger external is enabled on both channels.
- 2. Only a single channel is externally triggered during the sequence while remaining channel stays idle.
- 3. Times based on 0 programmable user delay.
- 4. Measurement time = $167\mu s$ (0.01 plc).
- 5. Steps points = 4.

