

Table of Contents

Definitions 2
Frequency specifications 3
Amplitude specifications 5
Spectral purity specifications 8
Analog modulation specifications 13
General characteristics 17
Inputs and outputs 19
Related literature 21

Definitions

Specification (spec): Specifications represent warranted performance of a calibrated instrument that has been stored for a minimum of 2 hours within the operating temperature range of 0 to $55^{\circ} \mathrm{C}$, unless otherwise stated, and after a 45 minute warm-up period. The specifications include measurement uncertainty. Data represented in this document are specifications unless otherwise noted.
Typical (typ): Typical (typ) describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level at room temperature (approximately $25^{\circ} \mathrm{C}$). Typical performance does not include measurement uncertainty.

Nominal (nom) or measured (meas): Nominal (nom) or measured (meas) describes a performance attribute that is by design or measured during the design phase for the purpose of communicating sampled, mean or average performance, such as the 50 ohm connector or amplitude drift vs. time. This data is not warranted and is measured at room temperature (approximately $25^{\circ} \mathrm{C}$).

Frequency Specifications

Range			
Frequency range	Option 513	9 kHz to 13 GHz	
	Option 520	9 kHz to 20 GHz	
	Option 532	9 kHz to 31.8 GHz	
	Option 540	9 kHz to 40 GHz	
Resolution	$0.001 \mathrm{~Hz}($ nom $)$		
Phase offset	Adjustable in nominal 0.1° increments	Option UZ2 ${ }^{3.4}$	
Frequency switching speed ${ }^{1}()=$ typical			
	Standard		
CW mode		$\leq 1.15 \mathrm{~ms}(\leq 750 \mu \mathrm{~s})$	$<1.65 \mathrm{~ms}(1 \mathrm{~ms})$
SCPI mode	$(\leq 5 \mathrm{~ms})$	$\leq 900 \mu \mathrm{~s}(\leq 600 \mu \mathrm{~s})$	$<1.4 \mathrm{~ms}(850 \mu \mathrm{~s})$
List/step sweep mode	$(\leq 5 \mathrm{~ms})$		

1. Time from receipt of SCPI command or trigger signal to within 0.1 ppm of final frequency or within 100 Hz , whichever is greater.
2. For export control purposes CW switching speed to within 0.05% of final frequency is 190 us (meas).
3. For export control purposes CW switching speed to within 0.05% of final frequency is >400 us (nom) below 20 GHz and >600 us (nom) above 20 GHz .
4. Specifications apply when status register updates are off.

Frequency reference

Accuracy	\pm aging rate \pm temperature effects \pm line voltage effects \pm initial setting accuracy
Internal time base reference oscillator aging rate ${ }^{1}$	$\begin{aligned} & < \pm 1 \times 10^{\wedge}-7 / \text { year (nom) } \\ & < \pm 5 \times 10^{\wedge}-10 / \text { day after } 30 \text { days (nom) } \end{aligned}$
Initial achievable calibration accuracy	$\pm 4 \times 10^{\wedge}-8$ or $\pm 40 \mathrm{ppb}$
Adjustment resolution	$<1 \times 10^{\wedge}-10$ (nom)
Temperature effects	$< \pm 2 \times 10 \wedge$ - 8 from 20 to $30^{\circ} \mathrm{C}$ (nom)
Line voltage effects	$< \pm 1 \times 10^{\wedge}-9$ for $\pm 10 \%$ change (nom)
Reference output	
Frequency	10 MHz
Amplitude	$\geq+4 \mathrm{dBm}$, (nom) into 50Ω load
External reference input	
Input frequency standard	10 MHz
Input frequency Option 1ER	1 to 50 MHz (in multiples of 0.1 Hz)
Lock range	$\pm 1 \mathrm{ppm}$ (nom)
Amplitude	$5 \mathrm{dBm} \pm 2 \mathrm{~dB}(\mathrm{nom})^{2}$
Impedance	50Ω (nom)
Waveform	Sine or square
Sweep modes (frequency and amplitude)	
Operating modes	Step sweep (equally spaced frequency and amplitude or logarithmically spaced frequency steps) List sweep (arbitrary list of frequency and amplitude steps) Simultaneously sweep waveforms with N5172B; see Baseband Generator section for more detail
Sweep range	Within instrument frequency range
Dwell time	100μ to 100 s
Number of points	2 to 65535 (step sweep) 1 to 3201 (list sweep)
Step change	Linear or logarithmic
Triggering	Free run, trigger key, external, timer, bus (GPIB, LAN, USB)

1. Aging rate is determined by design as a function of the OCXO.
2. Inputs between +3 dBm to +20 dBm are allowed.

Amplitude Specifications

Output parameters		
Settable range (with Option 1E1 and 1EA)	+30 to -130 dBm	
Settable range (without Option 1E1 and 1EA)	+19 to -20 dBm	
Resolution	0.01 dB , (nom)	
Step attenuator (1E1)	0 to 115 dB in 10 dB steps mechanical type	
Attenuator hold range	-15 dBm to maximum specified output power with step attenuator in 0 dB state; can be offset using option 1E1 mechanical attenuator	
Connector	$513 / 520=3.5$ SMA male, $532 / 540=2.4 \mathrm{~mm}$ male, 50Ω (nom) (Option 1ED adds Type-N connector to a 513 or 520)	
Max output power ${ }^{1}$ (dBm, with or without step attenuator, Option 1E1)		
Frequency	Standard	High
Option 513, 520		
9 kHz to 3.2 GHz	+18	+23
>3.2 to 13 GHz	+18	+20
>13 to 20 GHz	+15	+19
Option 532, 540		
9 kHz to 3.2 GHz	+14	+21
>3.2 to 17 GHz	+14	+16
>17 to 31.8 GHz	+13	+15
> 31.8 to 40 GHz	+11	+15

1. Ouoted specifications between 15 and $35^{\circ} \mathrm{C}$. Maximum output power typically decreases by $0.05 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ for temperatures outside this range.

Absolute level accuracy in CW mode ${ }^{1.2}$ (ALC on) () = typical

	With or without Option 1E1			With Option 1E1		
	Max power to $+10 \mathrm{dBm}$	$\begin{aligned} & <+10 \text { to } \\ & -10 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & <-10 \text { to } \\ & -20 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & <-20 \mathrm{to} \\ & -75 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & <-75 \text { to } \\ & -90 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & <-90 \mathrm{to} \\ & -120 \mathrm{dBm} \end{aligned}$
9 kHz to 2 GHz	$\pm 0.6 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 1.4 \mathrm{~dB}$	(± 0.3)
>2 to 20 GHz	$\pm 0.9 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 1.6 \mathrm{~dB}$	(± 0.3)
> 20 to 40 GHz	$\pm 0.9 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	

1. Level accuracy applies between $15^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$. Specifications do not apply above the maximum specified power. For temperatures outside this range, absolute level accuracy degrades by $0.01 \mathrm{~dB} /$ degree C for frequencies $\leq 4.5 \mathrm{GHz}$ and $0.02 \mathrm{~dB} /$ degree C for frequencies $>4.5 \mathrm{GHz}$.
2. For instruments with Type-N connectors (Option 1ED), specifications are degraded typically 0.2 dB above 18 GHz .

SWR (measured CW mode)	
Frequency	Attenuator state
	0 dB
$\leq 2 \mathrm{GHz}$	<1.7:1 < 1.2:1
> 2 to 8 GHz	$<1.4: 1$
>8 to 13 GHz	$<1.6: 1$
>13 to 20 GHz	$<1.8: 1$
> 20 to 40 GHz	$<1.6: 1$
External detector leveling ${ }^{1}$	
Range	-0.2 mV to -0.5 V (nom)
Bandwidth	10 kHz (typ)
Amplitude switching speed ${ }^{2}$	
SCPI mode	$\leq 2 \mathrm{~ms}$ (typ)
Power search SCPI mode ${ }^{3}$	$<12 \mathrm{~ms}$ (meas)
List/step sweep mode	$\leq 2 \mathrm{~ms}$ (typ)
User flatness correction	
Number of points	3201
Number of tables	Dependent on available free memory in instrument; 10,000 maximum
Entry modes	USB/LAN direct power meter control, LAN to GPIB and USB to GPIB, remote bus, and manual USB/GPIB power meter control
Sweep modes	
	See Frequency Specifications section for more detail
1. Not intended for pulsed operation.	
2. Time from receipt of SCPI command or trigger signal to amplitude settled within 0.2 dB . Specification does not apply when switching to or from frequencies $<5 \mathrm{MHz}$, or when ALC level is $<0 \mathrm{dBm}$, or when frequency crosses $0.002,0.02,0.1,2.0,3.2,5.0,6.4,8,10,12.8,16,20,25.6$, or 32 GHz .	

Spectral Purity Specifications

Standard absolute SSB phase noise (dBc/Hz) (CW) [at 20 kHz offset] ${ }^{1}$ ()= measured

5 to $<250 \mathrm{MHz}$	$-129(-133)$
250 MHz	$-139(-145)$
500 MHz	$-135(-139)$
1 GHz	$-130(-134)$
2 GHz	$-124(-127)$
3 GHz	$-119(-128)$
4 GHz	$-118(-122)$
6 GHz	$-112(-122)$
10 GHz	$-113(-116)$
20 GHz	$-106(-110)$
40 GHz	$-99(-104)$

Standard absolute SSB phase noise (dBc/Hz) (CW) [at 100 Hz offset] ()= measured

100 MHz	(-125)
250 MHz	(-121)
500 MHz	(-116)
1 GHz	(-110)
2 GHz	(-104)
3 GHz	(-100)
4 GHz	(-98)
6 GHz	(-94)
10 GHz	(-90)
20 GHz	(-84)
40 GHz	(-78)

Option UNY absolute SSB phase noise (CW) () = measured ${ }^{1}$

Frequency	$\mathbf{1 ~ H z}$	$\mathbf{1 0 ~ H z}$	$\mathbf{1 0 0 ~ H z}$	$\mathbf{1 ~ k H z}$	$\mathbf{1 0} \mathbf{~ k H z}$	$\mathbf{1 0 0 k H z}$
100 MHz	(-92)	$-93(-116)$	$-103(-125)$	$-130(-137)$	$-138(-142)$	$-137(-141)$
249 MHz	(-84)	$-93(-108)$	$-103(-117)$	$-130(-137)$	$-139(-142)$	$-138(-141)$
250 MHz	(-84)	$-96(-111)$	$-104(-121)$	$-127(-139)$	$-142(-150)$	$-147(-152)$
500 MHz	(-76)	$-89(-106)$	$-98(-116)$	$-125(-136)$	$-142(-149)$	$-144(-148)$
1 GHz	(-72)	$-86(-102)$	$-93(-111)$	$-123(-138)$	$-139(-146)$	$-139(-144)$
2 GHz	(-66)	$-79(-95)$	$-85(-104)$	$-114(-132)$	$-134(-141)$	$-133(-138)$
3 GHz	(-63)	$-74(-92)$	$-81(-101)$	$-111(-129)$	$-131(-139)$	$-127(-137)$
4 GHz	(-59)	$-73(-89)$	$-79(-98)$	$-110(-121)$	$-128(-135)$	$-127(-131)$
6 GHz	(-55)	$-69(-85)$	$-76(-94)$	$-107(-118)$	$-123(-129)$	$-121(-130)$
10 GHz	(-51)	$-63(-82)$	$-71(-90)$	$-101(-116)$	$-119(-129)$	$-121(-126)$
20 GHz	(-48)	$-57(-75)$	$-65(-84)$	$-95(-110)$	$-113(-122)$	$-115(-119)$
40 GHz	(-43)	$-51(-70)$	$-59(-78)$	$-89(-104)$	$-107(-116)$	$-109(-114)$

[^0]

Broadband noise ${ }^{1}()=$ measured

100 MHz	$(-143 \mathrm{dBc} / \mathrm{Hz})$	
500 MHz	$(-155 \mathrm{dBc} / \mathrm{Hz})$	
1 GHz	$(-163 \mathrm{dBc} / \mathrm{Hz})$	
10 GHz	(-150 dBc/Hz)	
20 GHz	(-143 dBc/Hz)	
40 GHz	(-135 dBc/Hz)	
Residual FM (CW mode, rms) See frequency band table for N value		
0.3 to 3 kHz bandwidth	$<\mathrm{N}^{*} 0.1 \mathrm{~Hz}$ (meas)	
0.05 to 15 kHz bandwidth	$<\mathrm{N}^{*} 0.5 \mathrm{~Hz}$ (meas)	
Residual AM (CW mode, +10 dBm, 0.3 kHz to 3 kHz bandwidth, rms)		
$<2 \mathrm{GHz}$	< 0.01\% (meas)	
Harmonics [CW mode] ${ }^{2}()=$ typical		
Range	CW mode at +10 dBm	CW mode at $+20 \mathrm{dBm}^{3}$
9 kHz to 200 MHz	$<-48 \mathrm{dBc}(-54)$	$<-38 \mathrm{dBc}(-43)$
$>200 \mathrm{MHz}$ to 2 GHz	$<-33 \mathrm{dBc}(-40)$	$<-25 \mathrm{dBc}(-31)$
>2 to 20 GHz	$<-55 \mathrm{dBc}(-65)$	$<-50 \mathrm{dBc}(-55)$

1. CW mode at +10 dBm for offsets $>10 \mathrm{MHz}$. In high signal to noise ratio mode (optimize S / N).
2. Specifications apply from +15 to $+35^{\circ} \mathrm{C}$ and are nominal for harmonics beyond specified frequency range.
3. Or maximum specified output power, whichever is lower.

Nonharmonics (CW mode) ${ }^{1.2}$ ()= typical		
Range	> 10 kHz offset	
	Standard (dBc)	UNY (dBc)
9 kHz to < 5 MHz	-65	-65 (-75)
5 to $<250 \mathrm{MHz}$	-75	-75 (-86)
250 to $<750 \mathrm{MHz}$	-75	-96 (-100)
750 MHz to $<1.5 \mathrm{GHz}$	-72	-92 (-100)
1.5 to $<3.0 \mathrm{GHz}$	-66	-86 (-93)
3 to $<5 \mathrm{GHz}$	-60	-80 (-88)
5 to $<10 \mathrm{GHz}$	-69	-74 (-80)
10 to $<20 \mathrm{GHz}$	-63	-68 (-75)
20 to 40 GHz	-57	-62 (-68)
Subharmonics (CW mode, dBc)		
9 kHz to 1.5 GHz	None	
> 1.5 to 3.2 GHz	-75 (-83)	
>3.2 to 5 GHz	-67 (-75)	
>5 to 10 GHz	-67 (-75)	
>10 to 20 GHz	-56 (-65)	
>20 to 40 GHz	-53 (-63)	

1. CW mode at +10 dBm .
2. Power line related non-harmonics: 60 Hz to $300 \mathrm{~Hz}:<-50 \mathrm{dBc}$. Measured from 1 MHz to 40 GHz .

Standard jitter ${ }^{1}$ (measured)

Carrier frequency	SONET/SDH data rate	rms jitter BW	$\boldsymbol{\mu}$ UI rms	Picoseconds
155 MHz	$155 \mathrm{MB} / \mathrm{s}$	100 Hz to 1.5 MHz	99.3	0.6
622 MHz	$622 \mathrm{MB} / \mathrm{s}$	1 kHz to 5 MHz	52	0.08
2.488 GHz	$2488 \mathrm{MB} / \mathrm{s}$	5 kHz to 20 MHz	205	0.08
9.953 GHz		10 kHz to 80 MHz	789	0.08
39.812 GHz	40 kHz to 320 MHz	3252	0.08	
UNY jitter ${ }^{1}$ (measured)				
Carrier frequency	SONET/SDH data rate	rms jitter $\mathbf{B W}$	$\mu \mathrm{UI}$ rms	Picoseconds
155 MHz	$155 \mathrm{MB} / \mathrm{s}$	100 Hz to 1.5 MHz	41.5	0.27
622 MHz	$622 \mathrm{MB} / \mathrm{s}$	1 kHz to 5 MHz	21	0.033
2.488 GHz	$2488 \mathrm{MB} / \mathrm{s}$	5 kHz to 20 MHz	71	0.028
9.953 GHz		10 kHz to 80 MHz	277	0.028
39.812 GHz		40 kHz to 320 MHz	1271	0.032

[^1]
Analog Modulation Specifications

Frequency bands		
Band \#	Frequency range	N
1	9 kHz to < 5 MHz	Digital synthesis
2	5 to < 250 MHz	1
3	250 to < 375 MHz	0.25
4	375 to < 750 MHz	0.5
5	750 MHz to $<1.5 \mathrm{GHz}$	1
6	1.5 to $<3 \mathrm{GHz}$	2
7	3 to $<6 \mathrm{GHz}$	4
8	6 to $<12 \mathrm{GHz}$	8
9	$12 \mathrm{to}<24 \mathrm{GHz}$	16
10	24 to 40 GHz	32
Frequency modulation (Option UNT) (See N value above)		
Max deviation	$\mathrm{N} \times 4 \mathrm{MHz}(\mathrm{nom})^{1}$	
Resolution	0.025% of deviation or 1 Hz , whichever is greater (nom)	
Deviation accuracy	$< \pm 2 \%+20 \mathrm{~Hz}^{2}$ [1 kHz rate, deviation is $\mathrm{N} \times 50 \mathrm{kHz}$]	
Modulation frequency response @ 100 KHz rate	1 dB bandwidth	DC/5 Hz to 3 MHz (nom)
	3 dB bandwwidth	DC/1 Hz to 7 MHz (nom)
Carrier frequency accuracy Relative to CW after DC cal	$< \pm 0.2 \%$ of set deviation $+(\mathrm{N} \times 1 \mathrm{~Hz})^{3}$	
	$< \pm 0.06 \%$ of set deviation + ($\mathrm{N} \times 1 \mathrm{~Hz}$) (typ) ${ }^{4}$	
Distortion	<0.4\% [1 kHz rate, deviation is $\mathrm{N} \times 50 \mathrm{kHz}$]	
FM using external inputs 1 or 2	Sensitivity	+1 V peak for indicated deviation (nom)
	Input impedance	$50 \Omega / 600 \Omega / 1 \mathrm{M} \Omega$ (nom)
	Paths	FM path 1 and FM path 2 are summed internally for composite modulation
Phase modulation (Option UNT) (See N value above)		
Maximum deviation	Normal bandwidth	$\mathrm{N} \times 2$ radians (nom)
	High-bandwidth mode	$\mathrm{N} \times 0.2$ radians (nom)
Frequency response	Normal bandwidth (3 dB)	DC to 1 MHz (nom)
	High-bandwidth mode (3 dB)	DC to 4 MHz (nom)
Resolution	0.1\% of deviation	
Deviation accuracy	$<+0.5 \%+0.01 \mathrm{rad}$ (typ) [1 kHz rate, normal BW mode]	
Distortion	<0.2\% (typ) [1 kHz rate, $\mathrm{N} \times 1$ radian deviation normal BW mode]	
ФM using external inputs 1 or 2	Sensitivity	+1 V peak for indicated deviation (nom)
	Input impedance	50Ω or 600Ω or $1 \mathrm{M} \Omega$ (nom)
	Paths	$\Phi \mathrm{M}$ path 1 and $\Phi \mathrm{M}$ path 2 are summed internally for composite modulation

1. Digital synthesis band $F M$ deviation is 5 MHz .
2. Specification applies from 15 to $35^{\circ} \mathrm{C}$.
3. Specification valid for temperature changes of less than $\pm 5^{\circ} \mathrm{C}$ since last DC calibration.
4. Typical performance immediately after a DC calibration.

Amplitude modulation (Option UNT) ${ }^{1}$

Depth		Linear mode	Exponential mode
Settable depth ALC ON with deep AM (default) or ALC off ${ }^{2}$		0 to 100\%	0 to 50 dB
Depth resolution		0.1\% (nom)	0.01 dB (nom)
AM depth accuracy ALC on 3	$\mathrm{f}<5 \mathrm{MHz}$	$\begin{aligned} & \hline 1.5 \% \text { of setting }+1 \% \\ & \text { (typ } 0.5 \% \text { of setting }+1 \% \text {) } \end{aligned}$	$\pm 2 \mathrm{~dB}$ @ 40 dB depth (typ) ${ }^{4}$
[@ 1 KHz rate, < 80\% depth]	$5 \mathrm{MHz} \leq \mathrm{f} \leq 3.2 \mathrm{GHz}$	$<4 \%$ of setting $+1 \%$	$\pm 2 \mathrm{~dB}$ @ 40 dB depth (typ) ${ }^{4}$
	>3.2 to 40 GHz	(typ 3\% of setting +1\%)	$\pm 4 \mathrm{~dB}$ @ 40 dB depth (typ) ${ }^{4}$

Total harmonic distortion (@ 1 KHz rate)

$\mathrm{f}<5 \mathrm{MHz}$	30% depth	$<0.25 \%$ (typ)
	80% depth	$<0.5 \%$ (typ)
$5 \mathrm{MHz}<\mathrm{f}<40 \mathrm{GHz}$	30% depth	$<2 \%$
	80% depth	$<3 \%$

Frequency response (30% depth, 3 dB BW)

9 kHz to $\leq 3.2 \mathrm{GHz}$	DC/10 Hz to $50 \mathrm{kHz}^{5}$
>3.2 to 40 GHz	DC/10 Hz to $100 \mathrm{kHz}^{5}$

AM inputs using External Inputs 1 and 2

Sensitivity	+1 V peak for indicated depth (over-range can be 200% or 2.2 V peak)
Input impedance	50Ω or 600Ω or $1 \mathrm{M} \Omega$, damage level: $\pm 5 \mathrm{~V}$ max
Paths	AM Paths 1 and 2 are summed internally for composite modulation

Simultaneous and composite modulation

Simultaneous modulation	All modulation types ($\mathrm{FM}, \mathrm{AM}, ~ \Phi \mathrm{M}$ and pulse modulation) may be simultaneously enabled except: FM and phase modulation cannot be combined; two modulation types cannot be simultaneously generated using the same modulation source. For example the Pulse, AM, and FM can run concurrently and all will modulate the output RF. This is useful for simulating signal impairments, FM chirp RADAR, or scan modulation.			
Composite modulation	AM, FM, and $Ф$ M each consist of two modulation paths which are summed internally for composite modulation. Modulation can be any combination of internal or external sources.			
	AM	FM	Phase	Pulse
AM	+	+	+	+
FM	+	+	-	+
Phase	+	-	+	+
Pulse	+	+	+	-
+ = compatible, - = incompatible				

1. AM specifications apply $6 d B$ below maximum specified power and down to -15 dBm for Option 520 or -20 dBm for Option 540 from 15 to $35^{\circ} \mathrm{C}$ with $A L C$ on.
2. ALC off is used for narrow pulse modulation and/or high AM depths with envelope peaks below ALC operating range. Carrier power level will be accurate after a power search is executed.
3. Deep AM with ALC on provides increased AM depths and improved distortion, together with closed-loop internal leveling. This mode requires a repetitive $A M$ waveform (frequency $>10 \mathrm{~Hz}$) with peaks $>-5 \mathrm{dBm}$ (nom), excluding step-attenuator setting).
4. $\pm 2 \mathrm{~dB} @ 40 \mathrm{~dB}$, and $50 \mathrm{~dB}<31.8 \mathrm{GHz}$, and $\pm 4 \mathrm{~dB}$ @ $50 \mathrm{~dB}>31.8 \mathrm{GHz}$ (meas).
5. From 5 MHz to 50 MHz carrier roll off is $<5 \mathrm{~dB}$ at 50 kHz rate. From 50 MHz to 3.2 GHz rate is useable up to 100 kHz . Above 3.2 GHz rate is useable to 1 MHz .

External modulation inputs

(Option UNT required for FM, AM, and phase modulation inputs; Option UNW required for pulse modulation inputs)

EXT1	AM, FM, PM
EXT2	AM, FM, PM
PULSE	Pulse $(50 \Omega$ only $)$
Input impedance	$50 \Omega, 1 \mathrm{M} \Omega, 600 \Omega, \mathrm{DC}$ and AC coupled

Standard internal analog modulation source

(Waveform generator for use with AM, FM, phase modulation, and LF out; requires Option UNT)	
Waveform Sine, square, triangle, positive ramp, negative ramp Rate range 0.1 Hz to 2 MHz (tunable to 3 MHz) Resolution 0.1 Hz Frequency accuracy Same as RF reference source (nom) LF audio output 0 to 5 V peak into $50 \Omega,-5 \mathrm{~V}$ to 5 V offset (nom)	

Multifunction generator (Option 303)

The multifunction generator option (Option 303) consists of 7 waveform generators that can be set independently with up to 5 simultaneously using the composite modulation features in AM, FM/PM plus LF out

Waveform

Function generator 1	Sine, triangle, square, pos ramp, neg ramp, pulse
Function generator 2	Sine, triangle, square, pos ramp, neg ramp, pulse
Dual function generator	Sine, triangle, square, pos ramp, neg ramp, pulse, phase offset and amplitude ratio for Tone2 relative to Tone1
Swept function generator	Sine, triangle, square, pos ramp, neg ramp Trigger: free run, trigger key, bus, external, internal, timer trigger,
Noise generator 1	Uniform, Gaussian
Noise generator 2	Uniform, Gaussian
DC	Only for LF output
Frequency parameters	

Sine wave	0.1 Hz to 10 MHz
Triangle, square, ramp, pulse	0.1 Hz to 1 MHz
Noise bandwidth	10 MHz
Resolution	0.1 Hz
Frequency accuracy	Same as RF reference source (nom)

Narrow pulse modulation (Option UNW or UW2) ${ }^{1}()=$ typical

On/off ratio	$>80 \mathrm{~dB}$ (typ) ${ }^{2}$
Rise/fall times (Tr, Tf)	$<10 \mathrm{~ns} ; 7 \mathrm{~ns}$ (typ)
Minimum pulse width ALC on/off ${ }^{3}$	$\geq 1 \mathrm{us}(500 \mathrm{~ns}$ typ) / $\geq 20 \mathrm{~ns}$
Repetition frequency ALC on/off	10 Hz to $500 \mathrm{kHz} / \mathrm{DC}$ to 10 MHz
Level accuracy (relative to CW) ALC on/off ${ }^{4}$	$\pm 0.7 \mathrm{~dB}(\pm 0.5$ typ) / (< $\pm 0.75 \mathrm{~dB}$ typ)
Width compression (RF width relative to video out)	$<5 \mathrm{~ns} \mathrm{(typ)}$

1. Pulse specifications apply to frequencies $>100 \mathrm{MHz}$ and power set to $>-3 \mathrm{dBm}$. Operable down to 10 MHz .
2. Above 35 GHz vernier $>0 \mathrm{dBm}$.
3. For export control purposes, Option UW2 limits minimum pulse width above 31.8 GHz to $\geq 500 \mathrm{~ns}$.
4. With power search on.

Video feed-through ${ }^{1}<3.2 />3.2 \mathrm{GHz}$	$(<50 \mathrm{mV} /<3 \mathrm{mV})$
Video delay (external input to video)	40 ns , nominal
RF delay (video to RF output)	45 ns , nominal
Pulse overshoot	$(<10 \%)$
Input level	+1 V peak $=\mathrm{RF}$ on into 50Ω, nominal
Td video delay (variable)	
Tw video pulse width (variable)	
Tp pulse period (variable)	

Internal pulse generator (included with Option UNW or UW2)

Modes	Free-run, square, triggered, adjustable doublet, trigger doublet, gated, and external pulse	
Square wave rate	0.1 Hz to $10 \mathrm{MHz}, 0.1 \mathrm{~Hz}$ resolution (nom)	
Pulse period	30 ns to 42 s (nom)	
Pulse width ${ }^{2}$	20 ns to pulse period -10 ns (nom)	
Resolution	10 ns	
Adjustable trigger delay	(-pulse period +10 ns) to (pulse width -10 ns)	
Settable delay	Free run	-3.99 to $3.97 \mu \mathrm{~s}$
	Triggered	0 to 40 s
Resolution (delay, width, period)	10 ns , nominal	
Pulse doublets	1st pulse delay	(Relative to sync out) 0 to 42 s - pulse width - 10 ns
	1st pulse width	20 ns to 42 s - delay - 10 ns
	2nd pulse delay	0 to 42 s - (delay $1+$ width2) - 10 ns
	2nd pulse width	20 ns to 42 s - (delay $1+$ delay 2 - 10 ns

Pulse train generator Option 320 (requires Option UNW or UW2)

Number of pulse patterns	2047
On/off time range ${ }^{2}$	20 ns to 42 s

[^2]
General Characteristics

Remote programming	
Interfaces	GPIB IEEE-488.2, 1987 with listen and talk LAN 1000BaseT LAN interface, LXI Class C compliant USB Version 2.0
Control languages	SCPI Version 1997.0
Compatibility languages	Agilent Technologies: N5181A\61A, N5182A \62A, N5183A, E4438C, E4428C, E442xB, E443xB, E8241A, E8244A, E8251A, E8254A, E8247C, E8257C/D, E8267C/D, 8648 series, 8656B, E8663B, 83711B/12B, 83731B/32B, 83751B/52B, 8340B/41B, 836xx series, 8664A, 8665A/B, 8644A, 8662A/63A
	Aeroflex Incorporated: 3410 series
	Rohde \& Schwarz: SMR, SMF100A ,SMB100A, SMBV100A, SMU200A, SMJ100A, SMATE200A, SMIO, SML, SMV
	Anritsu: MG369xA/B/C
Power requirements	
100 or $120 \mathrm{VAC}, 50$ or $60 \mathrm{~Hz}, 400 \mathrm{~Hz}$ 220 or $240 \mathrm{VAC}, 50$ or 60 Hz 280 Watts maximum	
Operating temperature range	
0 to $55{ }^{\circ} \mathrm{C}$	
Storage temperature range	
-40 to $70{ }^{\circ} \mathrm{C}$	
Operating and storage altitude	
Up to 15,000 ft or 4,600 m	
Environmental stress	
Samples of this product have been type tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude, and power line conditions. Test Methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.	
Safety	
Complies with European Low Voltage Directive 2006/95/EC - IEC/EN 61010-1, 3rd Edition - Canada: CSA C22.2 No. 61010-1-12 - USA: UL 61010-1 3rd Edition	
EMC	
Complies with European EMC Direct - IEC/EN 61326 - CISPR Pub 11 Group 1, class A - AS/NZS CISPR 11 - ICES/NMB-001	108/EC

Memory

Memory is shared by instrument states, user data files, sweep list files, and other files. Option 006 instrument security allows storage of up to 8 GB . Depending on how the memory is utilized, a maximum of 1000 instrument states can be saved.

Security (Option 006)

Option 006 "Removable memory card \& Instrument security" allows the following:

- Removable 8 GB solid state memory (SD card) from rear pane.
- User can force all files to be stored only on external memory card including instrument states, user data files, sweep list files, and other files
- Memory sanitizing, memory sanitizing on power on, and display blanking
- Disable USB ports

Self-test

Internal diagnostic routines test most modules in a preset condition. For each module, if its node voltages are within acceptable limits, the module "passes" the test.

Weight

N5183B-513/520: $\leq 14.5 \mathrm{~kg}$ (32 lb.$)$ net, $\leq 29.5 \mathrm{~kg}$ (65 lb .) shipping
N5183B-532/540: $\leq 15.0 \mathrm{~kg}$ (33 lb .) net, $\leq 29.9 \mathrm{~kg}$ (66 lb .) shipping
Dimensions
$88 \mathrm{~mm} \mathrm{H} \times 426 \mathrm{~mm} \mathrm{~W} \times 489 \mathrm{~mm} \mathrm{~L}$ (length includes rear panel feet)
(3.5 in $\mathrm{H} \times 16.8$ in $\mathrm{W} \times 19.2$ in L)
Max length (L) including RF connector tip to end of rear panel feet is 508 mm (20 in)

Recommended calibration cycle

36 months

ISO compliant

Inputs and Outputs

Front panel connectors (all connectors are BNC unless otherwise stated)

RF output	Output impedance 50Ω (nom)
Option 513/520	Precision APC-3.5 male, or Type- N with Option 1ED
Option 532/540	Precision 2.4 mm male; plus $2.4-2.4 \mathrm{~mm}$ and $2.4-2.9 \mathrm{~mm}$ female adapters
Maximum reverse power	$0.5 \mathrm{~W}, 0 \mathrm{Vdc}$
USB 2.0	Used with a memory stick for transferring instrument states, licenses and other files into or out of the instrument. Also used with U2000 Series USB average power sensors.

Rear panel connectors

Rear panel inputs and outputs are 3.3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.
RF output (1EM)

- Output impedance 50Ω (nom)
- Option 513/520 : Precision APC-3.5 male, or Type- N with option 1ED
- Option 532/540: Precision 2.4 mm male; plus $2.4-2.4 \mathrm{~mm}$ and $2.4-2.9 \mathrm{~mm}$ female adapters

Sweep out	Generates output voltage, 0 to +10 V when the signal generator is sweeping. This output can also be programmed to indicate when the source is settled or output pulse video and is TTL and CMOS compatible in this mode. Output impedance $<1 \Omega$, can drive $2 \mathrm{k} \Omega$. Damage levels are $\pm 15 \mathrm{~V}$.
Ext1	External AM/FM/PM \#1 input: Nominal input impedance is $50 \Omega / 600 \Omega / 1 \mathrm{M} \Omega$ nominal: Damage levels are $\pm 5 \mathrm{~V}$.
Ext2	External AM/FM/PM \#2 input: Nominal input impedance is $50 \Omega / 600 \Omega / 1 \mathrm{M} \Omega$ nominal: Damage levels are $\pm 5 \mathrm{~V}$.
Pulse	External pulse modulation input. This input is TTL and CMOS compatible. Low logic levels are 0 V and high logic levels are +1 V . Nominal input impedance is 50Ω. Input damage levels are $\leq-0.3 \mathrm{~V}$ and $\geq+5.3 \mathrm{~V}$.
Trigger 1 (in)	Accepts TTL and CMOS level signals for triggering point-to-point in sweep mode. Damage levels are $\leq-0.3 \mathrm{~V}$ and $\geq+5.3 \mathrm{~V}$.
Trigger 2 (out)	Default use is with sweep mode. The signal is high at start of dwell, or when waiting for point trigger in manual sweep mode; low when dwell is over or point trigger is received. This output can also be programmed to indicate when the source is settled, pulse synchronization, or pulse video. Outputs a 2.5 V into 50Ω nominal. Input damage levels are $\leq-0.3 \mathrm{~V}$ and $\geq+5.3 \mathrm{~V}$.
Reference input	Accepts a 10 MHz reference signal used to frequency lock the internal time base. Option 1ER adds the capability to lock to a frequency from 1 MHz to 50 MHz . Nominal input level -3.5 to +20 dBm , impedance 50Ω, sine or square waveform.
10 MHz out	Outputs the 10 MHz reference signal used by internal timebase. Level nominally +5 dBm . Nominal output impedance 50Ω. Input damage level is +16 dBm .
ALC in	This female BNC connector is used for negative external detector leveling. - Input impedance: $100 \mathrm{k} \Omega$ (nominal) - Signal levels: -0.2 mV to -0.5 V - Damage levels: <-12 V and > 1 V
Z-Axis output	This female BNC connector supplies a +5 V (nominal) level during retrace and band switch intervals of a step or list sweep. During step or list sweep, this connector supplies a -5 V (nominal) level when the RF frequency is at a marker frequency and intensity marker mode is on. The load impedance should be $\geq 5 \mathrm{k} \Omega$.

USB Type-A	There are two USB 2.0 Type-A connectors on the rear panel. Used with a memory stick for transferring instrument states, licenses and other files into or out of the instrument; also used with U2000 Series USB power sensors.
USB Type-B	There is one USB 2.0 Type-B connectors on the rear panel. The USB connector provides remote programming functions via SCPI.
LAN (1000 BaseT)	The LAN connector provides the same SCPI remote programming functionality as the GPIB connector. The LAN connector is also used to access the internal web server and FTP server. The LAN supports DHCP, sockets SCPI, VXI-11 SCPI, connection monitoring, dynamic hostname services, TCP keep alive. This interface is LXI class C compliant. Trigger response time for the immediate LAN trigger is 0.5 ms (minimum), 4 ms (maximum), 2 ms (typ); delayed/alarm trigger is unknown. Trigger output response time is 0.5 ms (minimum), 4 ms (maximum), 2 ms typical.
GPIB	The GPIB connector provides remote programming functionality via SCPI.

wwww.agilent.com
www.agilent.com/find/N5183B

Related Literature

Agilent X-Series Signal Generators

	www.agilent.com/quality
DEKRACer Tified TSO $9001: 2008$	Agilent Electronic Measurement Group DEKRA Certified ISO 9001:2008 Quality Management System

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

Canada	(877) 8944414
Brazil	$(11) 41973600$
Mexico	018005064800
United States	$(800) 8294444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 3758100$

Europe \& Middle East

Belgium	$32(0) 24049340$
Denmark	4545801215
Finland	$358(0) 108552100$
France	0825010700^{*}
	${ }^{*} 0.125 € /$ minute
Germany	$49(0) 70314646333$
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
United Kingdom	$44(0) 1189276201$

For other unlisted countries:
www.agilent.com/find/contactus
(BP-09-27-13)
Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2013
Published in USA, November 13, 2013
5991-3131EN

[^0]: 1. From 0 to $55^{\circ} \mathrm{C}$, excludes mechanic vibration, measured at +10 dBm or maximum specified power, whichever is less)
[^1]: 1. Calculated from phase noise performance in CW mode at +10 dBm . For other frequencies, data rates, or bandwidths, please consult your sales representative.
[^2]: 1. Video feed through applies to power levels $<+10 \mathrm{dBm}$.
 2. For export control purposes, Option UW2 limits minimum pulse width above 31.8 GHz to $\geq 500 \mathrm{~ns}$.
