Keysight B4661A Memory Analysis Software for Logic Analyzers

Pan and Zo Crosshair Options Option Setup. Rank 0 • 17 Chart 17 Y Avis 🐨 📰 🔍 🔍 R. Zoom X-Avis • 17 Show 17 Center 📃 Show Toolip 17 Show Avis Labels 1 -+ out of 0 events H C Go Command / Banks-> Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 Total Refresh 49 0 0 0 0 0 49 0 0 Precharge 709 119 65 138 56 100 122 97 1406 Activate 111 134 74 164 87 133 158 125 986 Read 268 210 195 358 384 352 2474 320 387 Write 54 98 47 72 42 45 87 73 518 1 Protocol Viewer-1 Waveform-1 DDR Vewer-1 Overview Listing-1

Data Sheet

Table of Contents

Overview	3
DDR3/4 and LPDDR2/3/4 Performance Analysis Tool (B4661A-4FP/TP/NP) – Traffic Overview – Performance Overview	5 5 6
 DDR and LPDDR Compliance Violation Analysis Tool (B4661A-3FP/TP/NP) Real-Time Violations Post Process Compliance Tests 	9 11 16
DDR Decoder with Physical Address Trigger Tool (B4661A-1FP/TP/NP)	20
LPDDR Decoder (B4661A-2FP/TP/NP)	21
 B4661A Standard Software Features Standard Software Tools Default DDR Probing Configurations. DDR Setup Assistant. DDR Eye Finder/Eye Scan. DDR Configuration Creator. 	22 22 22 22 23 25
 B4661A Memory Analysis Software Characteristics – Logic Analyzer Compatibility – Required Software – B4661A Memory Analysis Software Includes 	27 27 27 27
Ordering Information – B4661A Memory Analysis Software	28 28
Related Products - Related Literature	29 29

Overview

The Keysight B4661A memory analysis software offers a suite of tools that include the industry's first protocol compliance violation testing capability across speed changes, a condensed traffic overview for rapid navigation to areas of interest in the logic analyzer trace, powerful performance analysis graphics, and DDR and LPDDR decoders. With the B4661A memory analysis software and a Keysight logic analyzer ¹, users can monitor DDR3/4 or LPDDR2/3/4 systems to debug, improve performance, and validate protocol compliance. Powerful traffic overviews, multiple viewing choices, and real-time compliance violation triggering help identify elusive DDR/LPDDR system violations.

The Keysight B4661A memory analysis software provides four standard software features and four licensed memory analysis options.

Licensed software options

- DDR decoder with physical address trigger tool (B4661A-1xx)
- LPDDR decoder with physical address trigger tool for LPDDR/2/3 (B4661A-2xx)
- DDR and LPDDR compliance violation analysis toolset (B4661A-3xx)
 - Post-process compliance violation analysis
 - Real-time compliance violation analysis
- DDR3/4 and LPDDR2/3/4 performance analysis (B4661A-4xx)

Standard software features

- Default configurations for DDR and LPDDR probing solutions for Keysight logic analyzers ¹
- DDR setup assistant
- DDR eye finder/eye scan
- DDR configuration creator
- 1. B4661A is compatible with Keysight logic analyzers supported by Version 6.20 and higher of the logic and protocol analyzer software.

Overview (Continued)

Use the optional compliance violation analysis and performance tools to further debug, validate, and optimize your memory system. (See pages 5 to 19)

Use optional DDR or LPDDR decoders to monitor memory activity and follow the memory signal flow like a device on the memory bus. (See pages 20 to 21)

Start with Keysight's standard DDR/LPDDR tools to help setup your measurement (see pages 22 to 26)

- Standard configuration files for Keysight and FuturePlus interposers are provided.
- If a standard configuration is not available for your probing solution, the DDR/LPDDR configuration creator enables you to quickly create a configuration file relative to your system's layout.
- Setup assistant and eye scan help you get sampling positions, thresholds, and triggering adjusted for a good measurement.
- Eye scan also helps you identify multiple signal integrity and execution issues before you even take your first trace capture with your logic analyzer module.

DDR3/4 and LPDDR2/3/4 Performance Analysis Tool (B4661A-4FP/TP/NP)

Key features

- Traffic overview
 - Command graphing
 - Transaction decode
- Performance overview
 - Calculate and graph MByte data rates and % bus utilization
 - Address access mapping
 - By row and Col ADDR
 - By row ADDR and time
 - Refresh rate overview

Achieve greater insight faster using the B4661 memory analysis software for DDR3, DDR4, LPDDR2, LPDDR3, or LPDDR4. DDR/LPDDR memory measurement and debug work has become more complex and time consuming over the years as data rates increase and the architecture becomes more advanced. Using the DDR3/4 and LPDDR2/3/4 performance analysis tool, navigation to problem areas is simplified with a powerful new traffic overview that presents the logic analyzer trace capture at a high level with user-selected filtering.

Traffic Overview

Command graphing

Using traffic overview, each command on the bus is a row in the table. Columns vary depending on the viewing option chosen. Users choose from the following viewing options:

- View all ranks in this mode, the table columns are "All ranks," "Rank 0," Rank 1," etc. The chart shows a different color dot on a different line for each rank.
- View a single rank The table columns are "All banks," "Bank 0," etc. (For DDR4, the columns are "All BG/BA", then all combinations of BG and BA.) The chart shows one line of dots. A choice for which bank to view in the chart is enabled.
- All banks The chart shows a dot for every command on the rank, regardless of bank. All dots are the same color.
- A single bank The chart shows a dot for commands that apply only to the selected bank.
- If the user has a multi-rank system and wants to see charts of each rank simultaneously, then they can use multiple applications of the tool.

Figure 1. Traffic overview example: Graphing command activity by commands and banks across the captured trace from the Keysight logic analyzer.

The traffic overview containing transaction decode, summary calculations, meta-data, and graphing provides a condensed and insightful overview of system activity and enables powerful navigation to areas of interest.

DDR3/4 and LPDDR2/3/4 Performance Analysis Tool (B4661A-4FP/TP/NP) (Continued)

Transaction decode

Figure 2. Transaction decode provides a high-level view that is time-correlated to the listing window where the more detailed DDR bus decoder results are viewed. (The transaction decode also includes a details window to see the data associated with each read or write transaction.)

Performance Overview

Calculate and graph MByte data rates and % utilization

Figure 3. Customize performance views by changing sample rate and performance measurement selections.

DDR3/4 and LPDDR2/3/4 Performance Analysis Tool (B4661A-4FP/TP/NP) (Continued)

Address access mapping

Figure 4. Address access heat map enables an overview of the number of accesses at specific row and col addresses.

Figure 5. Users may also select row address and time as the axis on the address access heat map.

DDR3/4 and LPDDR2/3/4 Performance Analysis Tool (B4661A-4FP/TP/NP) (Continued)

Refresh rate overview

DDR/LPDDR memory is volatile. The charge on the memory cells (capacitors) needs to be "refreshed" to ensure memory values are retained. For DDR and LPDDR memory, there are two ways to refresh

- Issue the refresh command
- Issue a self-refresh command and put the memory into self-refresh mode for some length of time

Figure 6. Refresh rate charts of LPDDR4 trace activity and quick pass/fail indication.

The refresh rate overview provides insight into refresh performance. It graphs refresh rate information for each sampled RW (refresh window) time window. By default, new refresh window samples are taken whenever there is a refresh event: refresh commands or entering/ exiting self-refresh mode.

The X axis of this chart is time. The Y coordinate is the percent scale of expected refresh commands and self-refresh time found in the time window. The horizontal green line represents 100% for quick pass/fail indication. Red dots indicate areas that are under 100%.

Users can set the refresh window time (default 32 ms), the number (R) of refresh commands expected in the refresh window time, and the rank to display.

The highlighted box in the lower chart shows the refresh window time span for the sample at the "RW" marker point. The highlight box is red when under 100% and white when >= 100%.

The DDR and LPDDR compliance violation analysis toolset provides two tools under one license. Both compliance tools cover DDR, DDR2, DDR3, DDR4, LPDDR, LPDDR2, LPDDR3, and LPDDR4. The two tools are:

- Real-time compliance violation analysis
- Post-process violation analysis

Key features of both the post-process and real-time compliance violation tools:

- Test compliance violations across speed changes using the post-process compliance violation tool.
- Identify DDR/2/3/4 or LPDDR/2/3/4 state machine, protocol compliance, and protocol level bus cycle timing violations using either post-process or real-time tools.
- Save time with automated real-time DDR2/3/4 or LPDDR2/3/4 protocol compliance measurements and trace captures using the real-time compliance violation analysis tool.
- Edit parameters of the DDR/LPDDR standard preset tests easily using the enhanced parameter editing interface for both post-process and real-time tools.

Set Up	et Up Select Tests Configure Run Tests Automation Results H	tml Report
Select Tests	Select a DDR module to analyze LPDDR4 mod0 Select the DDR memory type LPDDR4 Select the speed bin for testing 1600	Refresh
Configure	Chip Selects Chip Select 0 CKE0 CKE0 Chip Select 1 CKE1	
Run Tests	Limits Current limit set: LPDDR4 1600 Limits Set Edit Limit Values Apply Custom Limit Set	ons gth OTF
Run Tests	Limits Current limit set: LPDDR4 1600 Limits Set Edit Limit Values Apply Custom Limit Set Data Options Automatically acquire new Logic Analyzer data when running te Maximum number of failures to list for a single test 20	ons gth OTF

Figure 7. Both the real-time and post-process compliance tools provide user interfaces with pull-down selections to make setup easy.

Post-process and real-time compliance tools both contain dialogs with descriptions of the parameter values for ease of editing.

Real-time compliance analysis

The automated real-time compliance analysis tool detects and captures state machine, protocol compliance, and protocol level bus cycle timing violations for DDR3/4 or LPDDR2/3/4. Real-time violation detection is an important advancement in DDR memory debug and validation. Monitoring your DDR bus real-time means the Keysight logic analyzer will continuously monitor the bus for the selected test and trigger if it occurs within the specified time frame. Beyond monitoring your DDR3/4 or LPDDR2/3/4 system real-time for elusive violations, designers can also monitor other digital system continuously for elusive, intermittent violations in protocol compliance or bus level timing.

Real-time testing enables

- Monitoring for compliance violations while running specific routines on the system under test.
- Unique feature of real-time compliance tool allows custom regression test suites to be created from a valid logic analyzer trigger for any valid Keysight logic analyzer configuration compatible with the B4661A.

The real-time compliance violation analysis tool cycles through preset or user-edited parameters for a selectable time limit on each parameter to capture logic analyzer traces of the complete ADD/CMD/DATA capture of the DDR/LPDDR bus triggering on the violation. The tool allows the user to save multiple traces of violations and produces a summary report when complete.

Real-Time Violations

State machine violations	s common to DDR, DDR2, DDR3, DDR4 and LPDDR, LPDDR2, LPDDR3, LPDDR4
READ or WRITE to an inac	ctive row
REFRESH to an active bar	nk
ACTIVATE to an active bar	nk
Real-time violations	
Compliance parameter	Real-time compliance tests
Parameters common to I	DDR, DDR2, DDR3, and LPDDR
tRASmin	ACTIVATE to PRECHARGE must be >= tRASmin
tRASmax	ACTIVATE to PRECHARGE/Auto-PRECHARGE must be <= tRASmax
tRCD	ACTIVATE to READ/WRITE must be >= tRCD
tRP	PRECHARGE to ACTIVATE/PRECHARGE must be >= tRP
tRTP	READ to PRECHARGE must be >= tRTP
tDRW	READ to WRITE must be >= tDRW
tDWP	WRITE to PRECHARGE must be >= tDWP
tCCD	WRITE to WRITE, READ to READ must be >= tCCD
tRFC	REFRESH to valid command (non_NOP/DESELECT) must be >= tRFC
tRRD	ACTIVATE to ACTIVATE (different banks) must be >= tRRD
tRC	ACTIVATE to ACTIVATE (same bank) must be >= tRC
tREFI	REFRESH to REFRESH <= tREFI*9
tMRD	MRS (Mode Register Set) to MRS must be >= tMRD
Additional DDR3 complia	ance parameters
tZQoper	Long cal (normal operation) to valid command must be >= tZQoper
tZQCS	Short calibration (normal operation) to any valid command must be > tZQCS
tMOD	MRS (MODE Register Set) to valid command must be >= tMOD
tREFPDEN	REFRESH to power down entry >= tREFPDEN
tRDPDEN	READ to power down entry >= tRDPDEN
tWRPDEN	WRITE to power down entry >= tWRPDEN
tXPR	Exit RESET from CKE high to valid command >= tXPR
tXSDLL	Self refresh exit to valid command with DLL must be >= tXSDLL

Real-Time Violations (Continued)

Compliance parameter	Real-time compliance tests			
Additional DDR4 compliance parameters				
tRASmin	ACTIVATE to PRECHARGE must be >= tRASmin			
tRASmax	ACTIVATE to PRECHARGE/Auto-PRECHARGE must be <= tRASmax			
tRCD	ACTIVATE to READ/WRITE must be >= tRCD			
tRP	PRECHARGE to ACTIVATE/PRECHARGE must be >= tRP			
tRTP	READ to PRECHARGE must be >= tRTP			
tDRW	READ to WRITE must be >= tDRW			
tDWP	WRITE to PRECHARGE must be >= tDWP			
tDWR	WRITE to READ must be > tDWR			
tCCD_L	WRITE to WRITE, same bank group must be >= tCCD_L			
tRFC	REFRESH to valid command (non_NOP/DESELECT) must be >= tRFC			
tRRD_L	ACTIVATE to ACTIVATE (same bank group) must be >= tRRD_L			
tRC	ACTIVATE to ACTIVATE (same bank) must be >= tRC			
tREFI	REFRESH to REFRESH <= tREFI*9			
tZQoper	Long cal (normal operation) to valid command must be >= tZQoper			
tZQCS	Short calibration (normal operation) to any valid command must be > tZQCS			
tMRD	MRS (MODE Register Set) to MRS must be >= tMRD			
tMOD	MRS (MODE Register Set) to valid command must be >= tMOD			
tREFPDEN	REFRESH to power down entry >= tREFPDEN			
tRDPDEN	READ to power down entry >= tRDPDEN			
tWRPDEN	WRITE to power down entry >= tWRPDEN			
tXPR	Exit RESET from CKE high to valid command >= tXPR			
tXSDLL	Self refresh exit to valid command with DLL must be >= tXSDLL			
tCKE	Duration of CKE high / low >= tCKE			
Additional LPDDR2/3 cor	npliance parameters			
tRASmin	ACTIVATE to PRECHARGE must be >= tRASmin			
tRASmax	ACTIVATE to PRECHARGE/Auto-PRECHARGE must be <= tRASmax			
tRCD	ACTIVATE to READ/WRITE must be >= tRCD			
tRTP	READ to PRECHARGE must be >= tRTP			
tDRW	READ to WRITE must be >= tDRW			
tDWP	WRITE to PRECHARGE must be >= tDWP			
tDWR	WRITE to READ must be > tDWR			
tCCD	WRITE to WRITE, must be >= tCCD			
tRRD	ACTIVATE to ACTIVATE (different banks) must be >= tRRD			
tZQCL	Long calibration command to any valid command (or CKE low) must be > tZQCL			
tZQCS	Short calibration command to any valid command (or CKE low) must be > tZQCS			
tZQINIT	Init calibration command to any valid command (or CKE low) must be > tZQINIT			
tZQRESET	Reset calibration command to any valid command (or CKE low) must be > tZQRESET			
tMRW	MRW command to any valid command (or CKE low) must be > tMRW			
tMRR	MRR command to any valid command (or CKE low) must be > tMRR			
tRFCab	REFRESH (all banks) to Active or Refresh must be > tRFCab			
tRFCpb	REFRESH (per bank) to Activate (same bank) or REFRESH must be > tRFCpb			
tRPab	PRECHARGE (all banks) to ACTIVE (any bank) must be >= tRPab			
tRPpb	PRECHARGE (per bank) to ACTIVE (same bank) must be >= tRPpb			
tCKE	Duration of CKE high / low >= tCKE			
tXP	Exit Power down to any valid command >= tXP			
tXSR	Exit self refresh to any valid command >=tXSR			

Real-Time Violations (Continued)

Compliance parameter	Real-time compliance tests			
Additional LPDDR4 compliance parameters				
tRASmin	ACTIVATE to PRECHARGE must be >= tRASmin			
tRASmax	ACTIVATE to PRECHARGE/Auto-PRECHARGE must be <= tRASmax			
tRCD	ACTIVATE to READ/WRITE must be >= tRCD			
tRTP	READ to PRECHARGE must be >= tRTP			
tCCD	READ -1 or any write (any bank) to READ-1 or any write (any bank) must be >= tCCD			
tCCDMW	Any write to MASKED WRITE (same bank) must be > =tCCDMW			
tRRD	ACTIVATE-2 to ACTIVATE-2 (different banks) must be >=tRRD			
tMRW	MRW-2 to any valid command must be >= tMRW			
tMRR	MRR-1 to any valid command must be >= tMRR			
tRPab	PRECHARGE (all banks) to ACTIVATE-2/REFRESH (any bank) >= tRPab			
tRPpb	PRECHARGE (per bank) to ACTIVATE-2 (same bank) or REFRESH (same bank or all banks) must be >= tRPpb			
tXSR	Exit self refresh to any valid command >= tXSR			
tPPD	Precharge (any bank to Precharge (any bank) must be >= tPPD			
tRFCab	REFRESH (all banks to ACTIVATE-2 or REFRESH >= tRFCab			
tRFCpd	REFRESH (per bank) to ACTIVATE-2 (same bank) or REFRESH > tRFCpb			
tREFI	REFRESH command to REFRESH command must be <=tREFI*9			
tCKE	Duration of CKE high / low >= tCKE			
tESCKE	Self Refresh Entry command to CKE low must be >= tESCKE			
tCMDCKE	Any valid command to CKE low must be >= tCMDCKE			
tCKEHCMD	Exit powerdown to any valid command >= tCKEHCMD			
tMMRRIa	Exit powerdown to MRR >= tMRRIa (where tMRRIa = tXP (tCKEHCMD) + tMRRI)			
BL16	Write/Read/Precharge - BL16 - Select these tests if your system uses fixed BL16			
BL32	Write/Read/Precharge - BL16 - Select these tests if your system uses fixed BL32			
BL OTF	Write/Read/Precharge - BL16 - Select these tests if your system uses Burst length OTF (on the fly)			
MWtoP	MASKED WRITE-1 to PRECHARGE (same bank) >= MWtoP			
MWtoR	MASKED WRITE-1 to READ (same bank) >= MWtoR			
RFtoLAT	RD_FIFO to ZQCALLATCH >= RFtoLAT			
RFtoLAT	RD_CALIBRATION to ZQCALLATCH >= RFtoLAT			
RFtoLAT	MRR to ZQCALLATCH >= RFtoLAT			
WFtoLAT	WR_FIFO to ZQCALLATCH >= WFtoLAT			
WFtoLAT	MASKED WRITE-1 to ZQCALLATCH >= WFtoLAT			
tZQCAL	ZQCALSTART to ZQCALLTACH >= tZQCAL			
tZQLAT	ZQCALLATCH to any valid command >= tZQLAT			
tZQRESET	ZQCALRESET to any valid COMMAnd >= tZQRESET			

Post-process compliance violation analysis tool

The post-process compliance violation analysis tool automates state machine, protocol compliance, and protocol level bus cycle timing violation detection across Keysight logic analyzer traces. HTML reports of test results show margin details for both passing and failing tests.

Use the post-process compliance application tool to:

- Spot check logic analyzer traces for violations.
- Check logic analyzer trace captures leading up to system crashes for possible violations before the crash.

Post-process testing enables:

- Compliance violation testing across speed changes.
- "Click to" and "mark violation" features to quickly navigate from the compliance tool to violations in the traffic overview graph, waveform, or listing window.
- Margin information on each parameter to understand the range relative to the specification.

xpand a parameter to edit its value.		(income)	
2 March 1999 March 1990 Marc			
CCDMW			
V tPPD			
escke			
CMDCKE			
tckehcmd			
SR tSR			
RtoWBL16			
READ16 to any write >= RtoWBL16, where RtoWBL16 is defined as:			
RL + RU(tDQSCK(max)/tCK) + BL/2 - WL + tWPRE + tRPST			
According to the LPDDR4 spec, the following are the possibilitie	es for the	various values in that equation:	
RL possible values: DBI-RD Disabled (default): 6, 10, 14, 20, 24	4, 28, 32,	36	
DBI-RD Enabled : 6, 12, 16, 22, 20 WL possible values: WL set & (default): 4, 6, 8, 10, 12, 14, 16	8, 32, 36, 6, 18	40	
WL set B: 4, 8, 12, 18, 22, 26, 30	0, 34		
tDuble is specia between 1.5 and 3.5 hs tWPRE is defined as 2 clocks for all clock speeds			
tRPST is defined as .5*tCK or 1.5*tCK. Rounding up, this is eith default.	her 1 or 2	clocks. Here 1 clock is used for a	1
This test is for BL16, and we assume tWPRE is 2			
Thus, the equation becomes:			
RL + RU(tDQSCK(max)/tCK) + 10 - WL + tRPST			
Essuming tRPST is 1 clock, we get:			
RL + RU(tDQSCK(max)/tCK) + 11 - WL			
RL + RU(tDQSCK(max)/tCK) + 11 - WL Select the limit type: Custom •			-
RL + RU (tDQSCK(max)/tCK) + 11 - WL Select the limit type: Custom • For clock frequency range 2 1866 MHz to 1 Infinity MHz the limit value is 34] clocks	x	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range @ 1866 MHz to I Infinity MHz the limit value is 31 For clock frequency range @ 1600 MHz to @ 1866 MHz the limit value is 31	clocks	X X	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range I 1866 MHz to I Infinity MHz the limit value is 34 For clock frequency range I 1600 MHz to I 1866 MHz the limit value is 31 For clock frequency range I 1333 MHz to I 1600 MHz the limit value is 29	Clocks	x x x	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range • 1866 MHz to • Infinity MHz the limit value is 34 For clock frequency range • 1600 MHz to • 1866 MHz the limit value is 31 For clock frequency range • 1333 MHz to • 1600 MHz the limit value is 29 For clock frequency range • 1066 MHz to • 1333 MHz the limit value is 26	Clocks clocks clocks clocks clocks	x x x x	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range • 1866 MHz to • Infinity MHz the limit value is 34 For clock frequency range • 1600 MHz to • 1866 MHz the limit value is 31 For clock frequency range • 1303 MHz to • 1600 MHz the limit value is 29 For clock frequency range • 1066 MHz to • 1333 MHz the limit value is 26 For clock frequency range • 1066 MHz to • 1066 MHz the limit value is 26] clocks clocks clocks clocks clocks clocks	x x x x x x	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom ▼ For clock frequency range ♥ 1866 MHz to ● Infinity MHz the limit value is 34 For clock frequency range ♥ 1600 MHz to ♥ 1866 MHz the limit value is 31 For clock frequency range ♥ 1333 MHz to ♥ 1600 MHz the limit value is 29 For clock frequency range ♥ 1066 MHz to ♥ 1333 MHz the limit value is 26 For clock frequency range ♥ 300 MHz to ♥ 1066 MHz the limit value is 24 For clock frequency range ♥ 333 MHz to ♥ 1066 MHz the limit value is 19 For clock frequency range ♥ 333 MHz to ♥ 800 MHz the limit value is 19	Clocks clocks clocks clocks clocks clocks clocks		
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range ✓ 1866 MHz to □ Infinity MHz the limit value is 31 For clock frequency range ✓ 1600 MHz to ✓ 1866 MHz the limit value is 29 For clock frequency range ✓ 1066 MHz to ✓ 1600 MHz the limit value is 26 For clock frequency range ✓ 1066 MHz to ✓ 1066 MHz the limit value is 24 For clock frequency range ✓ 266 MHz to ✓ 333 MHz the limit value is 19 For clock frequency range ✓ 266 MHz to ✓ 333 MHz the limit value is 19	Clocks clocks clocks clocks clocks clocks clocks clocks		
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom ▼ For clock frequency range ✔ 1866 MHz to □ Infinity MHz the limit value is 31 For clock frequency range ✔ 1600 MHz to ✔ 1866 MHz the limit value is 32 For clock frequency range ✔ 1333 MHz to ✔ 1600 MHz the limit value is 29 For clock frequency range ✔ 1066 MHz to ✔ 1066 MHz the limit value is 26 For clock frequency range ✔ 200 MHz to ✔ 1066 MHz the limit value is 24 For clock frequency range ✔ 333 MHz to ✔ 1066 MHz the limit value is 19 For clock frequency range ✔ 266 MHz to ✔ 533 MHz the limit value is 16 For clock frequency range Ø 266 MHz to Ø 266 MHz the limit value is 14	Clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks	X X X X X X X X X X	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range Ø 1866 MHz to Ø 1866 MHz the limit value is 31 For clock frequency range Ø 1600 MHz to Ø 1866 MHz the limit value is 31 For clock frequency range Ø 1600 MHz to Ø 1600 MHz to Ø 1600 For clock frequency range Ø 1066 MHz to Ø 1066 MHz the limit value is 29 For clock frequency range Ø 1066 MHz to Ø 1066 MHz the limit value is 26 For clock frequency range Ø 1006 MHz to Ø 1066 MHz the limit value is 124 For clock frequency range Ø 266 MHz to Ø 2066 MHz the limit value is 16 For clock frequency range Ø 266 MHz to Ø 266 MHz the limit value is 16 For clock frequency range Ø 266 MHz to Ø 266 MHz the limit value is 16 For clock frequency range Ø 0 MHz to Ø 266 MHz the limit value is 14 Add Row Add Row Add Row Add Row	Clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks	X X X X X X X X	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range Ø 1866 MHz to Ø 1866 MHz the limit value is 34 For clock frequency range Ø 1600 MHz to Ø 1866 MHz the limit value is 31 For clock frequency range Ø 1600 MHz to Ø 1866 MHz the limit value is 29 For clock frequency range Ø 1066 MHz to Ø 1066 MHz to Ø 1066 For clock frequency range Ø 800 MHz to Ø 1066 MHz to Ø 1066 For clock frequency range Ø 533 MHz to Ø 1066 MHz to Ø 1066 For clock frequency range Ø 533 MHz to Ø 1066 MHz to Ø 1066 For clock frequency range Ø 533 MHz to Ø 1066 MHz to Ø 1066 For clock frequency range Ø 533 MHz to Ø 1066 MHz to Ø 1066 For clock frequency range Ø 266 MHz to Ø 266 MHz to Ø 1066 For clock frequency range Ø 266 MHz to Ø 266 MHz the limit value is 16 For clock frequency range Ø 0 MHz to Ø 266 MHz the limit value is 14 Add Row WtorRBL16 WtorRBL16 Mta to Ø 1066	Clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks	X X X X X X X X X	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range I 1866 MHz to I Infinity MHz the limit value is 34 For clock frequency range I 1600 MHz to I 1866 MHz the limit value is 31 For clock frequency range I 1600 MHz to I 1600 MHz the limit value is 29 For clock frequency range I 1606 MHz to I 1066 MHz to I 1333 MHz the limit value is 26 For clock frequency range I 1600 MHz to I 1066 MHz to I 1066 MHz to I 1066 MHz to I 1066 For clock frequency range I 1056 MHz to I 1066 MHz to I 1066 MHz to I 1066 MHz to I 1066 For clock frequency range I 1050 MHz to I 1066 MHz to I 1066 MHz to I 1066 MHz to I 1066 For clock frequency range I 200 MHz to I 1066 MHz to I 1066 MHz to I 1066 MHz to I 1066 For clock frequency range I 200 MHz to I 2066 MHz to I 1066 MHz to I 1066 MHz to I 1066 For clock frequency range I 206 MHz to I 266 MHz to I 1067 MHz to I 1067 1067 MHz to I 1000 MHz to I 266 MHz to I 1067 1066 1067 1067 MHz to I 1000 I	I clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks	X X X X X X X	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range ♥ 1866 MHz to ● Infinity MHz the limit value is 34 For clock frequency range ♥ 1600 MHz to ♥ 1866 MHz the limit value is 29 For clock frequency range ♥ 1066 MHz to ♥ 1600 MHz to ♥ 1600 For clock frequency range ♥ 1066 MHz to ♥ 1066 MHz to ♥ 1066 For clock frequency range ♥ 200 MHz to ♥ 1066 MHz to ♥ 1066 For clock frequency range ♥ 333 MHz to ♥ 206 MHz the limit value is 19 For clock frequency range ♥ 260 MHz to ♥ 266 MHz the limit value is 14 Add Row ♥ WtoRBL16 ♥ ♥ WtoRBL16 ♥ ₩to ₱L16 ●	clocks	x x x x x x x x	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range Ø 1866 MHz to IInfinity MHz the limit value is 34 For clock frequency range Ø 1600 MHz to Ø 1866 MHz the limit value is 29 For clock frequency range Ø 1066 MHz to Ø 1600 MHz the limit value is 26 For clock frequency range Ø 1066 MHz to Ø 1066 MHz to Ø 1066 For clock frequency range Ø 333 MHz to Ø 1066 MHz the limit value is 19 For clock frequency range Ø 266 MHz to Ø 266 MHz the limit value is 16 For clock frequency range Ø 260 MHz to Ø 266 MHz the limit value is 14 Add Row WtoRBL16 WtoPBL16 WtoPBL16 RtoWBL32 Stade Stade Stade	Image: Control of the second secon	X X X X X X X	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range Ø 1866 MHz to II Infinity MHz the limit value is 34 For clock frequency range Ø 1600 MHz to Ø 1866 MHz the limit value is 31 For clock frequency range Ø 1006 MHz to Ø 1600 MHz the limit value is 29 For clock frequency range Ø 1006 MHz to Ø 1066 MHz the limit value is 26 For clock frequency range Ø 00 MHz to Ø 1066 MHz the limit value is 19 For clock frequency range Ø 266 MHz to Ø 266 MHz the limit value is 16 For clock frequency range Ø 0 MHz to Ø 266 MHz the limit value is 14 Add Row WtoRBL16 RtoPBL16 WtoRBL32 WtoRBL32 Proclock	Clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks	X X X X X X X	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range • 1866 MHz to IInfinity MHz the limit value is 34 For clock frequency range • 1600 MHz to II 1866 MHz the limit value is 31 For clock frequency range • 1000 MHz to II 1866 MHz the limit value is 29 For clock frequency range • 1060 MHz to II 1333 MHz the limit value is 26 For clock frequency range • 1066 MHz to II 1066 MHz the limit value is 19 For clock frequency range • 266 MHz to II 2533 MHz the limit value is 16 For clock frequency range • 0 MHz to II 2666 MHz to II 2666 VotockEl16 RtoPBL16 WtorBBL32 WtorBBL32 WtorBL32 RtoPBL32 NtorBL32 NtorBL32	Image: Control of the control of t	X X X X X X X X	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: For clock frequency range Ø 1866 MHz to Ø 1866 For clock frequency range Ø 1600 MHz to Ø 1866 For clock frequency range Ø 1600 MHz to Ø 1866 For clock frequency range Ø 1866 MHz to Ø 1866 For clock frequency range Ø 1803 MHz to Ø 1600 For clock frequency range Ø 1806 MHz to Ø 1066 For clock frequency range Ø 1800 MHz to Ø 1066 For clock frequency range Ø 2800 MHz to Ø 1066 For clock frequency range Ø 266 MHz to Ø 266 For clock frequency range Ø 266 MHz to Ø 266 For clock frequency range Ø 266 MHz to Ø 266 VtoRBL16 WtoPBL16 WtoBL32 WtoPBL32 WtoPBL32 WtoPBL32	I clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks	x x x x x x x x x x	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: For clock frequency range Ø 1866 MHz to Ø 1866 For clock frequency range Ø 1600 MHz to Ø 1866 For clock frequency range Ø 1600 MHz to Ø 1866 For clock frequency range Ø 1600 MHz to Ø 1866 For clock frequency range Ø 1600 MHz to Ø 1866 For clock frequency range Ø 1606 MHz to Ø 1066 For clock frequency range Ø 1066 MHz to Ø 1066 For clock frequency range Ø 1066 MHz to Ø 1066 For clock frequency range Ø 1066 MHz to Ø 1066 For clock frequency range Ø 1066 MHz to Ø 1066 For clock frequency range Ø 1066 MHz to Ø 1066 For clock frequency range Ø 1066 MHz to Ø 1066 For clock frequency range Ø 266 MHz to Ø 1066 For clock frequency range Ø 266 MHz to Ø 266 VtoRBL16 RtoBL16 © RtoBL16 RtoBL32 Ø WtoPBL32 Ø WtoPBL32 Ø WtoPBL32 Ø WtoPBL32 Ø NtoPBL32 RtoLATBL16	I clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks	x x x x x x x	
RL + RU (tDQSCK (max) / tCK) + 11 - WL Select the limit type: Custom • For clock frequency range I 1866 MHz to I Infinity MHz the limit value is 34 For clock frequency range I 1600 MHz to I 1600 MHz the limit value is 29 For clock frequency range I 1606 MHz to I 1600 MHz the limit value is 20 For clock frequency range I 1606 MHz to I 1060 MHz the limit value is 20 For clock frequency range I 1606 MHz to I 1060 MHz the limit value is 20 For clock frequency range I 1600 MHz to I 1066 MHz to II 1060 For clock frequency range I 2060 MHz to II 1060 MHz the limit value is 19 For clock frequency range I 266 MHz to II 266 MHz to II 160 For clock frequency range I 266 MHz to II 266 MHz to II 140 Add Row WtoRBL16 RtoPBL16 WtoRBL32 WtoRBL32 WtoRBL32 WtoRBL32 RtoLATBL16 WtoLATBL16 WtoLATBL16 WtoLATBL16	I clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks clocks	x x x x x x x]

Figure 8. Speed ranges can be added in the post-process compliance tool for any parameter that has different criteria based on speed.

Set Up Select Tests Configure Run Tests Automation Results Htm	Report		
Test Name	Actual Val	Margin	Pass Limits
✓ Four ACTIVATE window (different banks) must be >= tFAW	Pass	155E+01%	VALUE >= 40.0 ns
✓ READ or WRITE to an inactive row	Pass	100.0%	Pass/Fail
✓ REFRESH to an active bank	Pass	100.0%	Pass/Fail
✓ ACTIVATE to an active bank	Pass	100.0%	Pass/Fail
MRW command to MRW command (or CKE low) must be > tMRW	Not Run	100.0%	max(10ns, 10CK)
MRW command to any valid command must be > tMRD	Not Run	100.0%	max(14ns, 10CK)
MRR command to any valid command (or CKE low) must be > tMRR	Not Run	100.0%	VALUE >= 8 CK
✓ PRECHARGE (all banks) to ACTIVATE/REFRESH must be >= tRPab	Pass	4.2%	max(21ns,3CK)
✓ PRECHARGE (per bank) to ACTIVATE/REFRESH must be >= tRPpb	Pass	0.4%	max(18ns,3CK)
✓ Masked write to masked write must be >= tCCDMW	Not Run	100.0%	VALUE >= 32 CK
✓ PRECHARGE to PRECHARGE must be >= tPPD	Pass	50.0%	VALUE >= 4 CK
✓ Required number of refresh commands occur in time period <= tREFW	Pass	100.0%	Pass/Fail
Refresh (all banks) to Activate or Refresh must be > tRFCab	Fail	-0.7%	VALUE >= 180.0 n
Refresh (per bank) to Activate (same bank) or Refresh must be > tRFC	pb Not Run	100.0%	VALUE >= 90.0 n
√ Interval between refresh commands must be <= (tREFI * 9)	Pass	339.4%	Pass/Fail
√ No more than 16 refresh commands occur in time period (tREFI * 2)	Pass	100.0%	Pass/Fail
✓ Exit self-refresh to valid command >= tXSR.	Pass	3.0%	max(tRFCab + 7.5ns, 2nCK)
✓ Exit power down to valid command >= tXP	Not Run	100.0%	max(7.5ns,3CK)
✓ Self refresh entry command to CKE low >= tESCKE	Not Run	100.0%	VALUE >= 2 CK
✓ Any valid command to CKE low >= tCMDCKE	Not Run	100.0%	max(1.75ns, 3CK)
Exit powerdown to any valid command >= tCKEHCMD	Not Run	100.0%	max(7.5ns, 3CK)
✓ Self refresh entry to self refresh exit >= tSR	Pass	566.3%	max(15ns, 3CK)
✓ Duration of CKE high/low >= tCKELPD	Not Run	100.0%	max(7.5ns, 3CK)
✓ READ16 to any write >= RtoWBL16	Pass	53.8%	RL + RU(tDQSCK(max)/tCK) + BL/2 - WL
✓ WRITE16 or masked write to read >= WtoRBL16	Pass	5.7%	WL + 1 + BL/2 + RU(tWTR/tCK)
<pre>/ READ16 to PRECHARGE (same bank) >= RtoPBL16</pre>	Pass	220.0%	BL/2 + max{(8,RU(tRTP/tCK)} - 8
✓ WRITE16 or masked write to PRECHARGE (same bank) >= WtoPBL16	Pass	0.0%	WL + 1 + BL/2 + RU(tWR/tCK)
✓ READ32 to any write >= RtoWBL32	Not Run	100.0%	RL + RU(tDQSCK(max)/tCK) + BL/2 - WL
✓ WRITE32 to read >= WtoRBL32	Pass	4.7%	WL + 1 + BL/2 + RU(tWTR/tCK)
✓ READ32 to PRECHARGE (same bank) >= WtoPBL32	Not Run	100.0%	BL/2 + max{(8,RU(tRTP/tCK)} - 8
✓ WRITE32 to PRECHARGE (same bank) >= WtoPBL32	Pass	9.4%	WL + 1 + BL/2 + RU(tWR/tCK)
➤ Trial 1 Parameter Value Pass Limits >= 180.0 n Pass Limits >= 180.0 n Parameter Tested tRFCab Actual Value Fail Referenced Values: 19 Cick to mark all failures 19 Cick to mark all failures 19 State Pair Margin/Time/Clocks/Clock_Frequency -55473 -65225 -0.6%, 178.9 ns, 237 CK, 1.3 GHz -556473 -63284 -0.5%, 178.9 ns, 237 CK, 1.3 GHz			
5:1059 -60822 -0.6%, 178.9 ns, 237 CK, 1.3 GHz -19621 -63394 -0.7%, 178.6 ns, 237 CK, 1.3 GHz -45055 -44618 -0.6%, 179.0 ns, 237 CK, 1.3 GHz -37707 -37470 -0.6%, 179.0 ns, 237 CK, 1.3 GHz -25391 -25154 -0.6%, 179.0 ns, 237 CK, 1.3 GHz -24629 -24392 -0.7%, 178.7 ns, 237 CK, 1.3 GHz -23221 -22984 -0.6%, 179.0 ns, 237 CK, 1.3 GHz -325 -388 -0.6%, 179.0 ns, 237 CK, 1.3 GHz			

Figure 9. The post-process compliance tool includes hyperlinks to jump quickly to and/or mark violations and worst-case violations in the logic analyzer traces, transaction overview, and listing windows.

Post Process Compliance Tests

State machine violations	s common to DDR, DDR2, DDR3, DDR4 and LPDDR, LPDDR2, LPDDR3, LPDDR4				
READ to WRITE to an inactive row					
REFRESH to an active bank					
ACTIVATE to an active bank					
Post-process violations					
Compliance parameter	Post-process compliance tests				
Parameters common to I	DDR, DDR2, DDR3, and LPDDR				
tRASmin	ACTIVATE to PRECHARGE must be >= tRASmin				
tRASmax	ACTIVATE to PRECHARGE/Auto-PRECHARGE must be <= tRASmax				
tRCD	ACTIVATE to READ/WRITE must be >= tRCD				
tRP	PRECHARGE to ACTIVATE/PRECHARGE must be >= tRP				
tRTP	READ to PRECHARGE must be >= tRTP				
tDRW	READ to WRITE must be >= tDRW				
tDWP	WRITE to PRECHARGE must be >= tDWP				
tDWR	WRITE to READ must be > tDWR				
tCCD	WRITE to WRITE, READ to READ must be >= tCCD				
tRFC	REFRESH to valid command (non_NOP/DESELECT) must be >= tRFC				
tRRD	ACTIVATE to ACTIVATE (different banks) must be >= tRRD				
tFAW	Four ACTIVATE window (different banks) must be>= tFAW				
tRC	ACTIVATE to ACTIVATE (same bank) must be >= tRC				
tREFI	REFRESH to REFRESH <= tREFI*9				
tMRD	MRS (Mode Register Set) to MRS must be >= tMRD				
Additional DDR3 complia	ance parameters				
tZQoper	Long cal (normal operation) to valid command must be >= tZQoper				
tZQCS	Short calibration (normal operation) to any valid command must be > tZQCS				
tMOD	MRS (MODE Register Set) to valid command must be >= tMOD				
tREFPDEN	REFRESH to power down entry >= tREFPDEN				
tRDPDEN	READ to power down entry >= tRDPDEN				
tWRPDEN	WRITE to power down entry >= tWRPDEN				
tXPR	Exit RESET from CKE high to valid command >= tXPR				
tXSDLL	Self refresh exit to valid command with DLL must be >= tXSDLL				
tXPDLL	Exit precharge power down with DLL to any valid command < tXPDLL				
Additional DDR4 complia	ance parameters				
tRASmin	ACTIVATE to PRECHARGE must be >= tRASmin				
tRASmax	ACTIVATE to PRECHARGE/Auto-PRECHARGE must be <= tRASmax				
tRCD	ACTIVATE to READ/WRITE must be >= tRCD				
tRP	PRECHARGE to ACTIVATE/PRECHARGE must be >= tRP				
tRTP	READ to PRECHARGE must be >= tRTP				
tDRW	READ to WRITE must be >= tDRW				
tDWP	WRITE to PRECHARGE must be >= tDWP				
tDWR	WRITE to READ must be > tDWR				
tCCD_L	WRITE to WRITE, same bank group must be >= tCCD_L				
tRFC	REFRESH to valid command (non_NOP/DESELECT) must be >= tRFC				
tFAW	Four ACTIVATE window (different banks) must be>= tFAW				
tRRD_L	ACTIVATE to ACTIVATE (same bank group) must be >= tRRD_L				
tRC	ACTIVATE to ACTIVATE (same bank) must be >= tRC				
tREFI	REFRESH to REFRESH <= tREFI*9				

Post Process Compliance Tests (Continued)

Compliance parameter	Post-process compliance tests			
Additional DDR4 compliance parameters (Continued)				
tZQoper	Long cal (normal operation) to valid command must be >= tZQoper			
tZQCS	Short calibration (normal operation) to any valid command must be > tZQCS			
tMRD	MRS (MODE Register Set) to MRS must be >= tMRD			
tMOD	MRS (MODE Register Set) to valid command must be >= tMOD			
tREFPDEN	REFRESH to power down entry >= tREFPDEN			
tRDPDEN	READ to power down entry >= tRDPDEN			
tWRPDEN	WRITE to power down entry >= tWRPDEN			
tXPR	Exit RESET from CKE high to valid command >= tXPR			
tXSDLL	Self refresh exit to valid command with DLL must be >= tXSDLL			
tXPDLL	Exit precharge power down with DLL to any valid command < tXPDLL			
Additional LPDDR2/3 cor	npliance parameters			
tRASmin	ACTIVATE to PRECHARGE must be >= tRASmin			
tRASmax	ACTIVATE to PRECHARGE/Auto-PRECHARGE must be <= tRASmax			
tRCD	ACTIVATE to READ/WRITE must be >= tRCD			
tRTP	READ to PRECHARGE must be >= tRTP			
tDRW	READ to WRITE must be >= tDRW			
tDWP	WRITE to PRECHARGE must be >= tDWP			
tDWR	WRITE to READ must be > tDWR			
tCCD	WRITE to WRITE, must be >= tCCD			
tRRD	ACTIVATE to ACTIVATE (different banks) must be >= tRRD			
tFAW	Four ACTIVATE window (different banks) must be>= tFAW			
tZQCL	Long calibration command to any valid command (or CKE low) must be > tZQCL			
tZQCS	Short calibration command to any valid command (or CKE low) must be > tZQCS			
tZQINIT	Init calibration command to any valid command (or CKE low) must be > tZQINIT			
tZQRESET	Reset calibration command to any valid command (or CKE low) must be > tZQRESET			
tMRW	MRW command to any valid command (or CKE low) must be > tMRW			
tMRR	MRR command to any valid command (or CKE low) must be > tMRR			
tREFBW	Greater than 8 REFRESH all bank commands in tREFBW			
tREFW	Required number of refresh commands occur in time perion <= tREFW			
tRFCab	REFRESH (all banks) to Active or Refresh must be > tRFCab			
tRFCpb	REFRESH (per bank) to Activate (same bank) or REFRESH must be > tRFCpb			
tRPab	PRECHARGE (all banks) to ACTIVE (any bank) must be >= tRPab			
tRPpb	PRECHARGE (per bank) to ACTIVE (same bank) must be >= tRPpb			
tCKE	Duration of CKE high / low >= tCKE			
tXP	Exit Power down to any valid command >= tXP			
tCKESR	Duration of self-refresh >= tCKESR			
tDPD	Duration of power down to valid command >= tDPD			
tXSR	Exit self-refresh to valid command >= tXSR			
tXSR	Exit self refresh to any valid command >=tXSR			

Post Process Compliance Tests (Continued)

Compliance parameter	Post-process compliance tests
LPDDR4	
tRASmax	ACTIVATE to PRECHARGE/Auto-PRECHARGE must be <= tRASmax
tRASmin	ACTIVATE to PRECHARGE must be >= tRASmin
tRCD	ACTIVATE to READ/WRITE must be >= tRCD
tCCD	READ -1 or any write (any bank) to READ-1 or any write (any bank) must be >= tCCD
tCCDMW	Any write to MASKED WRITE (same bank) must be >= tCCDMW
tRRD	ACTIVATE-2 to ACTIVATE-2 (different banks) must be >= tRRD
tMRW	MRW-2 to any valid command must be >= tMRW
tMRR	MRR-1 to any valid command must be >= tMRR
tRPab	PRECHARGE (all banks) to ACTIVATE-2/REFRESH (any bank) >= tRPab
tRPpb	PRECHARGE (per bank) to ACTIVATE-2 (same bank) or REFRESH (same bank or all banks) must be >= tRPpb
tXSR	Exit self refresh to any valid command >= tXSR
tPPD	Precharge (any bank to Precharge (any bank) must be >= tPPD
tRFCab	REFRESH (all banks to ACTIVATE-2 or REFRESH >= tRFCab
tRFCpd	REFRESH (per bank) to ACTIVATE-2 (same bank) or REFRESH > tRFCpb
tCKE	Duration of CKE high/low >= tCKE
tESCKE	Self Refresh Entry command to CKE low must be >= tESCKE
tCMDCKE	Any valid command to CKE low must be >= tCMDCKE
tCKEHCMD	Exit powerdown to any valid command >= tCKEHCMD
tSR	Self refresh entry to self refresh exit >= tSR
tMMRRIa	Exit powerdown to MRR >= tMRRIa (where tMRRIa = tXP (tCKEHCMD) + tMRRI)
BL16	Write/Read/Precharge - BL16 - Select these tests if your system uses fixed BL16
BL32	Write/Read/Precharge - BL16 - Select these tests if your system uses fixed BL32
BL OTF	Write/Read/Precharge - BL16 - Select these tests if your system uses Burst length OTF (on the fly)
MWtoP	MASKED WRITE-1 to PRECHARGE (same bank) >= MWtoP
MWtoR	MASKED WRITE-1 to READ (same bank) >= MWtoR
RFtoLAT	RD_FIFO to ZQCALLATCH >= RFtoLAT
RFtoLAT	RD_CALIBRATION to ZQCALLATCH >= RFtoLAT
RFtoLAT	MRR to ZQCALLATCH >= RFtoLAT
WFtoLAT	WR_FIFO to ZQCALLATCH >= WFtoLAT
WFtoLAT	MASKED WRITE-1 to ZQCALLATCH >= WFtoLAT
tZQCAL	ZQCALSTART to ZQCALLTACH >= tZQCAL
tZQLAT	ZQCALLATCH to any valid command >= tZQLAT
tZQRESET	ZQCALRESET to any valid COMMAnd >= tZQRESET

Post Process Compliance Tests (Continued)

Compliance parameter	Post process / Compliance tests
LPDDR4	Refresh tests
tREFI*9	REFRESH command to REFRESH command must be <=tREFI*9
tREFW	Required number of refresh commands occur in time period <= tREFW
tRFCab	Refresh (all banks) to Activate or Refresh must be > tRFCab
tRFCpb	Refresh (per bank) to Activate (same bank) or Refresh must be > tRFCpb
tREFI*2	No more than 16 refresh commands occur in time period (tREFI *2)
LPDDR4	Power down and self-refresh tests
tXSR	Exit Self-Refresh to valid command >= tXSR
tXP	Exit power down to valid command >= tXP
tESCKE	Self-Refresh entry command to CKE low >= tESCKE
tCMDCKE	Any valid command to CKE low >= tCMDCKE
tCKEHCMD	Exit powerdown to any valid command >= tCKEHCMD
tSR	Self refresh entry to self refresh exit >= tSR
tMRRIa	Exit powerdown to MRR >= tMRRIa (tXP + tMRRI)
tCKE	Duration of CKE high/ low >= tCKE
LPDDR4	Write/Read/Precharge/Cal - BL16 - Select these tests if your system uses fixed BL 16
RtoWBL16	READ16 to any write >= RtoWBL16
WtoRBL16	WRITE16 to READ16 >= WtoRBL16
RtoRBL16	READ16 to PRECHARGE (same bank) >= RtoRBL16
WtoPBL16	WRITE16 to PRECHARGE (same bank) >= WtoPBL16
RtoLATBL16	READ32 to ZQCALLATCH >= RtoLATBL16
WtoLATBL16	WRITE32 to ZQCALLATCH >= WtoLATBL16
LPDDR4	Write/Read/Precharge/Cal - BL32 - Select these tests if your system uses fixed BL 32
RtoWBL32	READ32 to any write >= RtoWBL32
WtoRBL32	WRITE32 to READ16 >= WtoRBL32
RtoRBL32	READ32 to PRECHARGE (same bank) >= RtoRBL32
WtoPBL32	WRITE32 to PRECHARGE (same bank) >= WtoPBL32
RtoLATBL32	READ32 to ZQCALLATCH >= RtoLATBL32
WtoLATBL32	WRITE32 to ZQCALLATCH >= WtoLATBL32
LPDDR4	Write/Read/Precharge/Cal - BL OTF - Select these tests if your system uses fixed BL OTF (on the fly)
RtoWBL160TF	READ32 to any write >= RtoWBL160TF
WtoRBL160TF	WRITE32 to READ16 >= WtoRBL160TF
RtoRBL160TF	READ32 to PRECHARGE (same bank) >= RtoRBL160TF
WtoPBL160TF	WRITE32 to PRECHARGE (same bank) >= WtoPBL160TF
RtoWBL32otf	READ32 to any write >= RtoWBL320TF
WtoRBL320TF	WRITE32 to READ16 >= WtoRBL320TF
RtoRBL320TF	READ32 to PRECHARGE (same bank) >= RtoRBL320TF
WtoPBL320TF	WRITE32 to PRECHARGE (same bank) >= WtoPBL320TF
RtoLATBL160TF	READ32 to ZQCALLATCH >= RtoLATBL320TF
WtoLATBL160TF	WRITE32 to ZQCALLATCH >= WtoLATBL320TF
RtoLATBL320TF	READ32 to ZQCALLATCH >= RtoLATBL320TF
WtoLATBL320TF	WRITE32 to ZQCALLATCH >= WtoLATBL320TF

DDR Decoder with Physical Address Trigger Tool (B4661A-1FP/TP/NP)

The B4661A DDR decoder covers DDR/2/3/4 and provides protocol decoding of memory transactions on traces captured using a Keysight logic analyzer. The protocol decoding software translates acquired signals into easily-understood colorized bus transactions showing associated data bursts for double-edge data rate captures.

Key features

- Decodes DDR, DDR2, DDR3 and DDR4 commands and MRS commands
 - Includes selection to decode MRS of DDR4 RDIMM and LRDIMM.
- Enables fast physical address trigger setup with physical address trigger tool.

Sample Num	Physical Address	DDR Bus Decode	Cycle Type	DATA_R	DATA_W
		Click here for trig	ger menu		
205		BORGTOPP.	Data Read	FDF7 3CB4 3376 B34E	5417 1124 DC50 1C56
206		Deselect	Data Read	7704 3747 C3C6 021C	FB17 2E7A 8116 015E
207			Data Read	F055 2037 25E7 A58C	FF77 3CB4 3376 B35C
208		Precharge CS-0 BA-6	Precharge Command	995A 4C1A BF5E 3F7E	F714 3747 C3C6 020C
209			Data Read	C927 8C64 8B96 0B16	D054 2037 25E7 354C
210		Deselect	Data Read	CA18 8A5B 19B9 99A3	890F 4C1A BF5E 3F3E
211			Data Read	BF52 7E12 9846 595C	CA1B 8C64 8B96 0B22
212		Deselect	Data Read	F043 2022 F01B 70F2	8E10 8A5B 19B9 1952
213			Data Read	8CCF D8AE E778 266B	FE53 7E12 9846 59DC
214		Deselect	Data Read	8926 CC44 0148 8179	90C3 2022 F01B 7072
215			Data Read	748D 31EF 21E3 A188	8COF D8AE E778 267B
216		Deselect	Data Read	4934 8D55 OF57 8FDE	C08D CC44 0148 81A9
217			Data Read	C94E 8C0E 40C7 C09C	5D1C 31EF 21E3 81C8
218	21F4 3140	Write CS-0 BA-2	Write Command	0DD2 DD92 FE75 7ECF	4904 8D55 0F57 CF9C
218.1		Row Address = 0x0fal			
218.2		Col Address = 0x228			
218.3		Burst Type = Sequential (0, 1, 2, 3, 4,	5. *		
218.4	21F4 3140	mem write 0x196c4d0d dbfblaaa			
218.5	21F4 3148	mem write 0x46b093d1 f6167656			
218.6	21F4 3150	mem write 0x877dd63d 6d75accf			
218.7	21F4 3158	mem write 0xd14b042a 5fe89e29	•		
218.8	21F4 3160	mem write 0x1dc85d8b faf17a8b	•		
218.9	21F4 3168	mem write 0x10524112 0b388b63			
218.10	21F4 3170	mem write 0x3cfd79bd 2833e9c2			
218.11	21F4 3178	mem write 0x6ecfbbae 4451c4db			
219			Data Read	9423 5060 94F9 55AB	C9CE 8C0E 40C7 40CE
220		Deselect	Data Read	F855 2837 2B6D ABED	0D22 DD92 FE75 7ECF
221			Data Read	2A23 EB60 BE35 7FC7	B047 5060 94F9 F1E9
222		Deselect	Data Read	7BBF 2FFC 2FAC AF25	AA21 2837 286D 28CF
223			Data Read	CD23 9C60 FC43 7CD8	2A27 EB60 BE35 BFA5
224		Deselect	Idle	C723 9C37 6BE3 6CD8	6BAF 2FFC 2FAC 2F04
225			Idle	8F67 F862 FC43 70F8	CD23 9C60 FC43 7CD8
226		Activate CS-0 BA-6	Activate Command	80EC 433E 23E4 C7FE	D5EC 9C6F E8C3 54B8
226.1		Row Address = 0x0091			
227			Idle	3A4F A862 FC63 31A7	8F42 F802 FC53 70D2
228	21F4 3080	Write CS-0 BA-2	Write Command	126C 3B7F AF6C 4FA5	12EC 636D 03AC 0727
228.1		Row Address = 0x0fal			
228.2		Col Address = 0x210			
228.3		Burst Type = Sequential (0, 1, 2, 3, 4,	5. *		
228.4	21F4 3080	mem write 0xf7al36e1 692ba8e0			
228.5	21F4 3088	mem write 0x1e605b01 13e993a9			

Figure 10. DDR decoder display in listing window.

LPDDR Decoder (B4661A-2FP/TP/NP)

Key features

- Decodes LPDDR, LPDDR2, LPDDR3 and LPDDR4 commands and MRS commands
- Enables fast physical address trigger setup for LPDDR2/3

Using the LPDDR decoder, valid read and write commands are decoded to include row and column addresses and the complete data burst associated with the command.

Figure 11. LPDDR4 decode in listing window.

Physical address conversion tool in both DDR3/4 and LPDDR2/3 decoders with integrated trigger creation

Setting up a trigger on a specific physical address to obtain the corresponding data bus can be very tedious. The physical address trigger tool is included in the B4661A DDR decoder and LPDDR decoder options. The trigger tool allows you to automatically create a trigger on a specific physical address without having to go through a step-by-step trigger add-in. The physical address trigger tool incorporates a user-friendly interface to help the user quickly setup the trigger. DDR2/3/4 and LPDDR2/3 are covered by the physical address trigger tool. LPDDR4 is not covered by the physical address trigger tool.

B4661A Standard Software Features

Standard Software Tools

B4661A standard software features for DDR/LPDDR memory compliance testing and debug

- Default DDR probing configurations
- DDR setup assistant
- DDR eye finder/eye scan
- DDR configuration creator

Default DDR Probing Configurations

Default configurations for Keysight DDR and LPDDR memory probes are available at no charge as part of the Keysight B4661A memory analysis software package. Default configurations include all labels and settings required to interface with the DDR setup assistant tool for rapid tuning of state mode measurements. Keysight default configurations include:

- Labeling and grouping of signals appropriate for each memory probe
- Symbol tables for command labels
- Trigger favorites for memory applications:
 - Basic trigger (simple read/write trigger)
 - Mode register settings (trigger to display mode register settings)
 - Filter NOPs (trigger to filter some of the NOPs)
 - Burst 4 write data (trigger to occur on a unique 4 burst write)
 - Burst 8 write data (trigger to occur on a unique 8 burst write)

DDR Setup Assistant

DDR measurements made fast, easy, and powerful

The DDR setup assistant simplifies measurement setup and minimizes the time to tune state mode measurements on the logic analyzer. DDR setup assistant guides you through even the most complex logic analyzer setup in minutes. It includes a variety of powerful, time-saving trigger features optimized for DDR measurements. The tool automatically configures optimum thresholds and controls DDR eye finder scans to rapidly locate optimal sample positions.

The DDR setup assistant tool is available at no charge as part of the Keysight B4661A memory analysis software package.

B4661A Standard Software Features (Continued) DDR Eye Finder/Eye Scan

DDR eye scan makes it easy to determine the optimum acquisition sample point without requiring an oscilloscope. Qualified scans place the sample position at the center of the eye on every individual channel for maximum data capture reliability, including separate sampling positions for read and write data. Interface selections allow the user to customize scans for particular views and conditions of interest.

Figure 12. The DDR eye scan interface provides easy-to-follow pull-downs and options that control powerful scan qualifications for the user. Burst qualified eye scans from signal trace mode allow you to view the activity on the signals only when a burst is taking place. Screen shot above shows DDR4 2400 Mb/s read DQS and read DQ0 scanned in signal trace mode with no back-to-back bursts.

Increased insight decreases test time. Eye scan helps you identify bus level signal integrity and execution issues before you even take your first measurement by providing qualitative comparisons of eye diagrams relative to each other that allow you to quickly identify abnormalities at a glance.

Bus-level SI insight is the ability to view eye scans of up to hundreds of signals in a bus relative to each other. It is important because it provides:

- Quick, qualitative comparisons
 - Between signals in scan
 - Between scans where one variable has changed
 - More signals than possible on scope
- Powerful scan qualification provides views not easily obtained by any other method

B4661A Standard Software Features (Continued)

Figure 13. In this DDR4 at 3.1 Gb/s eye scan screen shot, scanned as read bursts with no back-to back transactions, using signal trace mode in DDR eye scan, we can quickly see that the first sample in the burst does not drive to the lowest value within the time of the first data sample. This indicates the possibility of Inter-Symbol Interference from either insufficient DRAM drive strength or incorrect termination settings.

B4661A Standard Software Features (Continued)

DDR Configuration Creator

The DDR/LPDDR configuration creator tool allows you to define the footprints layout per your custom probing solution used in the DDR/LPDDR setup and then create an XML configuration file based on your footprint information with the click of a button. The generated XML configuration file contains all the information for your custom probing required for the Keysight B4661A memory analysis software tools.

Once your custom XML configuration is created, it can be selected by the Keysight DDR setup assistant tool to define the DDR/LPDDR acquisition setup for your Keysight logic analyzer. By using a custom configuration file, you can ensure that the logic analyzer setup is correctly and completely set for a custom probing scenario.

The DDR configuration creator tool enables

- Naming of footprints from schematic drawings.
- Tracking and highlighting which signals have already been assigned, helping to ensure that the user doesn't miss a signal or incorrectly double-assign a signal.
- Selection of either Soft Touch Pro footprints (three different schematic views) or custom (per pod) for signal assignments.

Supported bus types

The DDR configuration creator tool can generate configuration files for the following DDR/LPDDR bus types.

- DDR3
- DDR4 (< 2.5 GHz and > 2.5 GHz clock rates)
- LPDDR2
- LPDDR3
- LPDDR4 (< 2.5 GHz and > 2.5 GHz clock rates)

B4661A Standard Software Features (Continued)

Figure 14. The DDR configuration creator tool lets you define Soft Touch Pro footprint or custom (per logic analyzer Pod) pin assignments.

B4661A Memory Analysis Software Characteristics Logic Analyzer Compatibility

The B4661A memory analysis software is compatible with the following logic analyzer modules:

Product	Description
U4154B	136-channel, 4 Gb/s state, AXIe-based logic analyzer module with ability to merge up to
	three modules
U4154A	136-channel, 4 Gb/s state, AXIe-based logic analyzer module with ability to merge up to
	two modules
16850 Series	Portable logic analyzers

Required Software

- Logic and protocol analyzer software, version 6.20 or higher
- B4661A memory analysis software

B4661A Memory Analysis Software Includes

The logic and protocol analyzer software package combined with the B4661A installation package includes all standard and optional software. Standard features are always available for use. Optional features require the purchase of a license to enable the full functionality of the option. You can obtain a one-time, full-featured 30-day trial license from Keysight.com. The Keysight B4661A memory analysis software provides four standard software features and four licensed memory analysis options.

Standard software features

- Default configurations for DDR and LPDDR probing solutions for Keysight logic analyzers
- DDR setup assistant
- DDR eye finder/eye scan
- DDR configuration creator

Licensed software options

- DDR decoder with physical address trigger tool (B4661A-1xx)
- LPDDR decoder with physical address trigger tool for LPDDR/2/3 (B4661A-2xx)
- DDR and LPDDR compliance violation analysis toolset (B4661A-3xx)
 - Post-process compliance violation analysis
 - Real-time compliance violation analysis
- DDR3/4 and LPDDR2/3/4 performance analysis (B4661A-4xx)

DDR and LPDDR compatibility for B4661A options

	DDR	DDR2	DDR3	DDR4	LPDDR	LPDDR2	LPDDR3	LPDDR4
DDR decoder with physical address	\checkmark	\checkmark	\checkmark	\checkmark				
trigger tool (-1xx)								
LPDDR decoder (-2xx)							\checkmark	
DDR and LPDDR compliance		\checkmark					\checkmark	
violation analysis (-3xx)								
DDR3/4 and LPDDR2/3/4							\checkmark	
performance analysis (-4xx)								

Ordering Information

B4661A Memory Analysis Software

The B4661A installation package includes standard and optional licensed software. Standard features are always available for use. Optional licensed features require the purchase of a license to enable the full functionality of the option. You can obtain a one-time full featured, 30-day trial license from Keysight.com.

When ordering, if you request the email delivery option, you will be sent an electronic copy of the Entitlement Certificate so you redeem your license and begin using the software, often on the same day.

- 1. Select the desired license type
- Fixed perpetual license the license is locked to the PC where the B4661A Memory Analysis software operates
- Transportable perpetual license the license is locked to the PC where B4661A Memory Analysis software operates, however the license can be moved. The deletion from one host PC is confirmed prior to issuing a license for another host PC.
- Floating/server perpetual license the license is locked to a license server from which the B4661A Memory Analysis software automatically checks out the necessary licenses. Licenses are checked back into the server once your analysis session is terminated. Each use of a licensed tool uses a single count of the server license. The count for each server license is:
 - B4661A-1NP server license count = 2
 - B4661A-2NP server license count = 4
 - B4661A-3NP server license count = 4
 - B4661A-4NP server license count = 4
- 2. Select the desired functionality.

B4661A	Memory analysis software for logic analyzers standard features at no-charge, includes: Default configurations, DDR setup assistant, DDR configuration creator, DDR EyeScan and EyeFinder		
Fixed perpetual licenses			
B4661A-1FP	DDR decoder with physical address trigger tool, fixed perpetual license		
B4661A-2FP	LPDDR decoder, fixed perpetual license		
B4661A-3FP	DDR and LPDDR compliance violation analysis, fixed perpetual license		
B4661A-4FP	DDR3/4 and LPDDR2/3/4 performance analysis, fixed perpetual license		
Transportable perpetual licenses			
B4661A-1TP	DDR decoder with physical address trigger tool, transportable perpetual license		
B4661A-2TP	LPDDR decoder, transportable perpetual license		
B4661A-3TP	DDR and LPDDR compliance violation analysis, transportable perpetual license		
B4661A-4TP	DDR3/4 and LPDDR2/3/4 performance analysis, transportable perpetual license		
Floating/server perpetual licenses			
B4661A-1NP	DDR decoder with physical address trigger tool, network/floating perpetual license		
B4661A-2NP	LPDDR decoder, network/floating perpetual license		
B4661A-3NP	DDR and LPDDR compliance violation analysis, network/floating perpetual license		
B4661A-4NP	DDR3/4 LPDDR2/3/4 performance analysis, network/floating perpetual license		

Related Products

The B4661A operates with the following Logic Analyzers modules and probes from Keysight Technologies. Logic analyzer selection criteria includes: logic analyzer specifications and characteristics, maximum DDR technology data rate, and minimum data valid windows of the data eyes at the logic analyzer probe point.

Product	Description		
AXIe-based logic analyzers			
U4154B	U4154B 136-channel, 4 Gb/s state, AXIe-based logic analyzer module allowing 3 modules to merge		
U4154A	U4154A 136-channel, 4 Gb/s state, AXIe-based logic analyzer module		
16850A	16850A Series Portable Logic Analyzers ¹		
DDR4 BGA interposers			
W4633A	DDR4 x4/x8, 78 ball, ADD/CMD/DQ, 3.2Gb/s, BGA interposer for logic analyzers		
W4631A	DDR4 x16, 96 ball, ADD/CMD/DQ, 3.2Gb/s, BGA interposer for logic analyzers		
W4636A	DDR4 x16, 96 ball, ADD/CMD/partial DQ, 2.4Gb/s, BGA interposer for logic analyzers		
DDR3 BGA interposers			
W3631A	DDR3 x16 BGA command and data probe for logic analyzer and oscilloscope		
W3633A	DDR3 x4/x8 BGA command and data probe for logic analyzer and oscilloscope		
Required software			
Logic and protocol analyzer software. Version 6.2 or higher is required. The latest logic and protocol analyzer software is available for download from			

www.keysight.com/find/lpa-sw-download.

For additional DDR/2/3/4 and LPDDR/2/3/4 probing options, contact your local Keysight representative **www.keysight.com/find/ contactus** or refer to the U4154B logic analyzer data sheet, 5992-0180EN.

Information on FuturePlus DIMM and SODIMM interposers for DDR2, DDR3, and DDR4 is available at www.futureplus.com/DDR3-Memory/keysight-la-support-overview.html.

For additional analysis software, refer to www.keysight.com/find/logic-sw-apps.

1. For DDR3 ADD/CMD analysis up to DDR3 1400 Mb/s (700 MHz clock).

Related Literature

Publication title	Pub number
U4154B 4 Gb/s State Mode Logic Analyzer Module - Data Sheet	5992-0108EN
W4630A Series DDR4 BGA Interposers for Logic Analyzers - Data Sheet	5991-4258EN
16850A Series Portable Logic Analyzers - Data Sheet	5991-2791EN
W3630A Series DDR3 BGA Probes for Logic Analyzers and Oscilloscopes - Data Sheet	5990-3179EN

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.axiestandard.org

AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Keysight is a founding member of the AXIe consortium. ATCA®, AdvancedTCA®, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.

www.lxistandard.org

Three-Year Warranty

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.

www.keysight.com/find/ThreeYearWarranty

Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

www.keysight.com/go/quality

Keysight Technologies, Inc. DEKRA Certified ISO 9001:2008 Quality Management System

Keysight Infoline

Keysight Infoline

www.keysight.com/find/service

Keysight's insight to best in class information management. Free access to your Keysight equipment company reports and e-library.

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/B4661A

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 11 2626
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

United Kingdom

For other unlisted countries: www.keysight.com/find/contactus (BP-04-23-15)

This information is subject to change without notice. © Keysight Technologies, 2015 Published in USA, August 13, 2015 5992-0984EN www.keysight.com