Keysight N5264A

Measurement Receiver

Technical
Specifications and
Data Sheet

Documentation Warranty

THE MATERIAL CONTANEDIN THIS DOCUMENTIS PROMDED"AS IS," ANDIS SUBJ ECTTOBEINGCHANGED, WTHOUTNOTICE, INFUTURE EDITIONS. FURTHER, TOTHE MAXMUM EXTENTPERMITIEDBY APPUCABLELAW, KEYSIGHTDISCAMS AL WARRANTES, ETHER EXPRESS OR IMPUED WTH REGARDTOTHIS MANUAL AND ANY INFORMATION CONTANED HEREIN, INCLUDINGBUTNOT UMITEDTOTHE IMPUEDWARRANTIES OF MERCHANTABIUTY AND FITNESS FOR A PARTICULAR PURPOSE KEYSIGHTSHAL NOTBE UABLE FOR ERRORS OR FOR INUDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WTHTHE FURNISHING, USE, OR PERFORMANCE OF THS DOCUMENTOR ANY INFORMATION CONTANEDHEREN. SHOULDKEYSIGTTANDTHE USER HAVEASEPARATE WRITIEN AGREEMENT WTH WARRANTYTERMS COVERING THE MATERIAL INTHIS DOCUMENTTHAT CONFLCTWTH THESE TERMS, THE WARRANTYTERMS IN THE SEPARATE AGREEMENTWL CONTROL

U.S. Goverment Rights

U.S. Govemment Rights. The Software is "commercial computer software", as defined byFederal Acquisition Regulation ("FAR") 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement ("DFARS") 227.7202, the U.S. govemment acquires commercial computer software under the same tems by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. govemment customers under its standard commercial license, which is embodied inits End User License Agreement (EULA), a copy of which can be found at http://www.keysight.com/find/sweula. The license set forth in theEULA represents the exclusive authority by which the U.S. govermment may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or othemise provide, the govemment rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional govermment requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses areexplicitly required fromall providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere intheEULA Keysight shall be under no obligationto update, revise or otherwise modify the Software With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. govemment acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR $227.7103-5$ (c), as applicable in anytechnical data.

Contents

Table 1. Key Specifications 4
Table 2. Measurement Throughput Surmary 5
Table 3. Rear Panel Information 9
Table 4. Front Panel Information 15
Table 5. Analyzer Dimensions and Weight 16

Definitions

All specifications and characteristics apply over a $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ range (unless otherwise stated) and 90 minutes after the instrument has been turmed on.
Specification(spec.): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, meesurement uncertainties, and changes in performance due to environmental conditions.
Cheracteristic (cher.): A pefformance parameter that the product is expected to meet before it leaves the factory, but that is not verified in the field and is not covered by the product warranty. A characteristic includes the same guardbands as a specification.
Typical (typ): Expected performance of an average unit which does not include guardbands. It is not covered by the product warranty.
Nominal (nom): A general, descriptive termthat does not imply a level of performance. It is not covered by the product warranty.
Calibration The process of measuring known standards to characterize a network anal yzer's systematic (repeatable) errors.
Corrected (residurl): Indicates performance after error correction (calibration). It is determined by the quality of calibration standards and how well "known" they are, plus systemrepeatability, stability, and noise.
Uncorrected (raw): Indicates instrument pefformance without error correction. The uncorrected performance affects the stability of a calibration.
Standart When refering to the anal yzer, this includes no options unless noted otherwise.

Table 1. Key Specifications

Description	Specifications
Measurement Speed (max) points/sec 400,000 points/sec ${ }^{\mathbf{1}}$ @ 600 KHz IFBW, CW frequency	
Receiver Inputs	5 (simultaneously)
Measurement Receivers	5 (simultaneously)
Data Buffer Size	4 billion bytes
Data Buffer size (max points for single cut)	500 million points ${ }^{2}$
IF Bandwidth	1 Hz to 5 MHz
Frequency Source Control Interface	TL hand shake
Trigger In / Out	Three pairs
Host Computer Interface	Ethemet, USB and GPIB
Security	Hard drive removable
${ }^{1}$ Fast CW mode- no point triggering.	
${ }^{2}$ For single parameter, two parameters are 250 million points each.	

Table 2. Measurement Throughput Summary

Typical Cycle Time ${ }^{\mathbf{1 , 2}}$ (ms) for Measurement Completion

Description	Typical Performence (time/point in millisecond)			
Number of Points	CW10Gtz (moband crossings), 801 points			
Tigger Mode	Herchare			
IFBandwidth	600ktz	100ktz	10ktz	1ktz
RF = MXG, N5183Aopt. UNZ, Fast switching LO=MXG, N5183A opt. UNZ, Fast switching	0.070	0.075	0.185	1.00
RF = MXG, N5183A opt. UNZ, Fast switching $\text { LO=N5264A opt. } 108^{3}$	0.070	0.075	0.185	1.00
RF =MXG, N5183A opt. UNZ, Fast switching LO=PSG	0.350	0.350	0.450	0.250
RF = MXG, N5183A opt. UNZ, Fast switching $\mathrm{LO}=83623 \mathrm{~B}$	0.900	0.900	1.00	1.800
RF =UGX, N5193A opt. SS1, 1μ s switching speed LO =UGX, N5193A opt. SS1, 1μ s switching speed	. 020	. 027	. 140	. 940

Description	Typical Performance (time/point inmillisecond)	
Standard		
Number of Points	8011601	
Trigger Mode	Harchare	Sensitivity(dBm) ${ }^{4}$
RF =MXG, N5183A opt. UNZ, Fast switching LO $=$ MXG, N5183A opt. UNZ, Fast switching	0.5800 .580	$-90.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ - $94.5 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ $-83 \mathrm{dBm} 12.5-18 \mathrm{GHz}$
RF =MXG, N5183A opt. UNZ, Fast switching LO= N5264A opt. 108^{3}	$0.580 \quad 0.580$	$-85.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ $-90.5 \mathrm{dBm} \quad 3-12.5 \mathrm{GHz}$ $-81 \mathrm{dBm} \quad 12.5-18 \mathrm{GHz}$
RF =UGX, N5193A opt. SS1, 1μ s switching speed LO $=$ UGX, N5193A opt. SS1, 1μ s switching speed	$0.039 \quad 0.034$	$-90.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ $-94.5 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ $-83 \mathrm{dBm} 12.5-18 \mathrm{GHz}$

RF = MXG, N5183A opt. UNZ, Fast switching LO $=$ MXG, N5183A opt. UNZ, Fast switching	0.580	0.580	$\begin{array}{lr} -92.5 \mathrm{dBm} & 2-3 \mathrm{GHz} \\ -96.5 \mathrm{dBm} & 3-12.5 \mathrm{GHz} \\ -85 \mathrm{dBm} & 12.5-18 \mathrm{GHz} \end{array}$
RF =MXG, N5183A opt. UNZ, Fast switching LO= N5264A opt. 108^{3}	0.580	0.580	$-85.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ $-92.5 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ $-83 \mathrm{dBm} 12.5-18 \mathrm{GHz}$
RF =UGX, N5193A opt. SS1, 1μ s switching speed LO =UGX, N5193A opt. SS1, 1μ s switching speed	0.045	0.039	$-92.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ $-96.5 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ - $85 \mathrm{dBm} 12.5-18 \mathrm{GHz}$

Start2 Gtz, Stop 18 GHt, 10 kHz IF bandwidth (withbandcrossings)			
RF = MXG, N5183A opt. UNZ, Fast switching LO $=$ MXG, N5183A opt. UNZ, Fast switching	0.730	0.730	$-110.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ - $114.5 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ $-103 \mathrm{dBm} 12.5-18 \mathrm{GHz}$
RF = MXG, N5183A opt. UNZ, Fast switching $\text { LO=N5264A opt. } 108^{3}$	0.730	0.730	$-103.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ - $110.5 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ - $101 \mathrm{dBm} 12.5-18 \mathrm{GHz}$
RF =MXG, N5183A opt. UNZ, Fast switching LO=PSG E8267Dopt. 520, UNX	9.50	9.50	$-110.25 \mathrm{dBm}, \quad 2-3 \mathrm{GHz}$ - $112.50 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ $-96.50 \mathrm{dBm} 12.5-18 \mathrm{GHz}$
RF =MXG, N5183A opt. UNZ, Fast switching $L O=83623 B$	7.80	--	$-108.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ - $113.0 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ $-96.0 \mathrm{dBm} 12.5-18 \mathrm{GHz}$
RF =UGX, N5193A opt. SS1, 1μ s switching speed LO =UGX, N5193A opt. SS1, 1μ s switching speed	0.170	0.167	$-110.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ - $114.5 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ - $103 \mathrm{dBm} 12.5-18 \mathrm{GHz}$

Start 2 GHz, Stop 18 GHъ, 1 kHz IF bandwidth (with band arossings)

RF =MXG, N5183A opt. UNV, Fast switching LO =MXG, N5183A opt. UNZ, Fast switching	1.5	1.5	$-120.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ - $124.5 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ $-113 \mathrm{dBm} 12.5-18 \mathrm{GHz}$
RF =MXG, N5183Aopt. UNZ, Fast switching $\text { LO=N5264A opt. } 108^{3}$	1.5	1.5	$-113.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz}$ - $120.5 \mathrm{dBm} 3-12.5 \mathrm{GHz}$ - 111 dBm 12.5 -18 GHz
RF = UGX, N5193A opt. SS1, 1μ s switching speed LO =UGX, N5193A opt. SS1, 1μ s switching speed	0.970	0.970	$\begin{array}{lr} -120.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz} \\ -124.5 \mathrm{dBm} & 3-12.5 \mathrm{GHz} \\ -113 \mathrm{dBm} & 12.5-18 \mathrm{GHz} \end{array}$
Start 2 Głz, Stop 18 GHz, 500 Hz IF bandwidth (with band crossings)			
RF =UGX, N5193A opt. SS1, 1μ s switching speed LO =UGX, N5193A opt. SS1, 1μ s switching speed	1.85	1.85	$\begin{array}{lr} -120.5 \mathrm{dBm} \quad 2-3 \mathrm{GHz} \\ -124.5 \mathrm{dBm} & 3-12.5 \mathrm{GHz} \\ -113 \mathrm{dBm} & 12.5-18 \mathrm{GHz} \end{array}$

	Option 118 Fast-CWmode(CWfrequency)	
	Number of Points perSecond (\#pt/Sec)	Extemal Trigger

Time/ Point (ms)

Description	Typical Pefammence					
Start 2 Gtt, Stop 18Gł, 801 points (with band crossings), hardvaretrigger						
IF Bandwidth	1MH	600 kHz	100ktz	10ktz	1 kHz	500 Hz
RF = UGX, N5193A opt. SS1, 1μ s switching speed	. 032	. 035	. 047	. 165	. 965	1.85
LO=UGX, N5193A opt. SS1, 1μ s switching speed						

Data Transfer Time (ms)

Description	Typical Performence			
	Number of Paints			
	$\mathbf{2 0 1}$	$\mathbf{4 0 1}$	$\mathbf{1 6 0 1}$	$\mathbf{1 6 , 0 0 1}$
SCPI overGPIB				
Programexecuted on extemal PC ${ }^{\mathbf{5}}$				
32-bit floating point	5.6	10.5	39.9	400
64-bit floating point	10.5	20.3	79.2	788
ASCll	46	92.5	370	3702

SCPI overSIC/LANorTCP/IP Sodet

Programexecuted inthe analyzer				
32-bit floating point	0.18	0.21	0.5	3.6
64-bit floating point	0.22	0.28	0.62	5.3
ASCll	6.3	12.3	47.3	470
comp				
Programexecuted inthe analyzer				
32-bit floating point	40.15	0.15	0.2	0.7
Variant type	0.75	1.2	4.5	50

DCOMover LAN 6

Programexecuted on extemal PC				
32-bit floating point	<1.0	1.2	2.1	13
Variant type	2.7	4.5	15	150

[^0]
Table 3. Rear Panel Information

External IF Inputs	
Description	Typical Performance
Function	Allows use of extemal IF signals from remote mixers or frequency converters
Connectors	SMA (female); A, B, C, D, R
Input Frequency	7.438017 MHz (See IF Input Frequencies below.)
Input Impedance	50,
RF DamageLevel	+23 dBm
DC Damage Level	1VDC
0.1 dB Compression Point	-9.0 dBm
Compression@-10 dBm	
Magnitude	0.03 dB
Phase	0.23°
Noise Floor	
10HzIF BW	$-143 \mathrm{dBm}$
10KHzIF BW	$-113 \mathrm{dBm}$
Crosstalk	$-134 \mathrm{~dB}^{1}$
Dynamic Range @ 10 Hz	134 dB @ 0.1dB compressionto noise floor
Dynamic Accuracy	
-40 dBmreference, over range set by compression and noise floor @ IF Frequencies	
$-10 \mathrm{dBm}$	0.037 dB
$-20 \mathrm{dBm}$	0.024 dB
-30 dBm	0.016 dB
-40 dBm	0.010 dB
-50 dBm	0.013 dB
-60 dBm	0.021 dB
-70 dBm	0.032 dB

IF Input Frequencies

The IF Input frequencies are different depending on the DSP Version.

With DSP Version 4:

- \quad RF or Transmitting frequency $<53 \mathrm{MHz}$: IF $=2.535211 \mathrm{MHz}[3 \times(60 e 6 / 71)]$
- RF or Transmitting frequency $>=53 \mathrm{MHz}$ IF $=7.605634 \mathrm{MHz}[9 \times(60 e 6 / 71)$]

With DSP Version 5, the IF frequency is dependent on the RF or Transmitting frequency AND the current IFBW setting:

- All RF or Transmitting frequency, IF Bandwidth $>=1 \mathrm{MHz}$

IFBW Setting	IF Frequency
1 MHz	7.692 MHz
1.5 MHz	7.368 MHz
2 MHz	8.450 MHz
3 MHz	8.163 MHz
5 MHz	6.897 MHz
7 MHz	10.53 MHz
10 MHz	15.38 MHz
15 MHz	22.22 MHZ

- IF Bandwidth $\Longleftarrow 600 \mathrm{kHz}$:

0 RF or Transmitting frequency <53 MHz; IF $=2.479339 \mathrm{MHz}[(3 x(100 e 6 / 121)]$
o RF or Transmitting frequency $>=53 \mathrm{MHz}$ IF $=7.438017 \mathrm{MHz}[(9 \times(100 e 6 / 121)]$

Manually change the IF frequency

The IF frequency can be changed to any value between +14.9999 MHz and -14.9999 MHz using SENS:IF:FREQ (SCPI) or IFFrequency (COM) commands.

- Wth DSP Version 4-34 and above, min and max IF frequencies up to $+\boldsymbol{t}-20.1 \mathrm{MHz}$ are available.
- With DSP Version 5, minand max IF frequencies up to \#- 38 MHzare available.
- Performance is degraded drastically above +-14.9999 MHz

External IFInputs (Cont)	
Description	Typical Performence
Dymaric Accuracy (Cont)	
-40 dBmreference, over range set by compression and noise floor @ IF Frequencies	
-80 dBm	0.041 dB
-90 dBm	0.049 dB
-100 dBm	0.057 dB
-110 dBm	0.072 dB
-120 dBm	0.188 dB
LOatput 2 (Option 108)	
Description	Specification
FrequencyStability	H- 0.05 ppm -10 to 70C, H- 0.1ppm/yrmax
Frequency Accuracy	H-1 ppm
Description	Typical Performance
Frequency Range	10 MHz to 26.5 GHz
Frequency Switching Speed ${ }^{3}$	<100 microsecond/point
Frequency Resolution	1Hz
Power Flatness	H- 1.0 dB
Power Output	+10 dBm
$2^{\text {2d }}$ Hamorics ${ }^{4}$	
20 MHz to 2.0 GHz	$-23 \mathrm{dBC}$
2.0 GHz to 5.0 GHz	$-28 \mathrm{dBC}$
5.0 GHz to 23.0 GHz	-35dBC
23.0 GHz to 26.5 GHz	-27 dBC

LOatput 2 (Option 108)			
Description	Typical Performence		
$3^{\text {r1/ }}$ Mammarics ${ }^{3}$			
30 MHz to 8.0 GHz	-32 dBC		
8.0 GHz to 15.0 GHz	-38dBC		
15.0 GHz to 26.5 .0 GHz	-48 dBC		
Phese Noise			
	1KHz 10KHzOffet	100 KHz Offset	1 MHz Offet
10 MHz to 500 MHz	$-80 \mathrm{dBC} / \mathrm{Hz} \quad-85 \mathrm{dBC} / \mathrm{Hz}$	-76 dBC/Hz	$-113 \mathrm{dBC} / \mathrm{Hz}$
500 MHz to 1 GHz	$-90 \mathrm{dBC} / \mathrm{Hz} \quad-110 \mathrm{dBC} / \mathrm{Hz}$	-106 dBC/Hz	$-115 \mathrm{dBC} / \mathrm{Hz}$
1 GHz to 2 GHz	$-85 \mathrm{dBC} / \mathrm{Hz} \quad-105 \mathrm{dBC} / \mathrm{Hz}$	-101 dBC/Hz	$-110 \mathrm{dBC} / \mathrm{Hz}$
2 GHz to 4GHz	$-80 \mathrm{dBC} / \mathrm{Hz} \quad-100 \mathrm{dBC} / \mathrm{Hz}$	-96 dBC/Hz	-105 dBC/Hz
4GHzto8GHz	$-74 \mathrm{dBC} / \mathrm{Hz} \quad-94 \mathrm{dBC} / \mathrm{Hz}$	-90 dBC/Hz	-99 dBc/Hz
8 GHz to 16 GHz	$-68 \mathrm{dBC} / \mathrm{Hz}$-88 dBC/Hz	-84 dBC/Hz	-93 dBc/Hz
16 GHz to 26.5 GHz	-62 dBC/Hz $\quad-82 \mathrm{dBC} / \mathrm{Hz}$	-78 dBC/Hz	-87 dBc/Hz
10 MH R Reference			
10MHR Referenceln			
Connector	BNC, female		
Input Frequency	$10 \mathrm{MHz} \pm 10$ ppm, typical		
Input Level	-15 dBm to +20 dBm typical		
Input Impedance	200 Ω, nom		
10MHR Reference ${ }^{\text {at }}$			
Connector	BNC, female		
Output Frequency	$10 \mathrm{MHz} \pm 1 \mathrm{ppm}$ typical		
Signal Type	SineWave, typical		
Output Level	$+10 \mathrm{dBm} \pm 4 \mathrm{~dB}$ into 50Ω		
Output Impedance	50Ω, nominal		
Harmonics	$<40 \mathrm{dBC}$, typical		

Extemal Manitor Infametion

Description	Typical Performence
VGAVideoOutput	
Connector	15-pin mini D-Sub; Dives VGA compatible monitors
Devices Supportect	Resolutions:
Flat Panel (TTT)	1024X768, $800 \times 600,640 \times 480$
Flat Panel (DSTN)	800 X600, 640×480
CRT Monitor	$1280 \times 1024,1024 \times 768,800 \times 600,640 \times 480$
--	Simultaneous operation of the intermal and extemal displays is allowed, but with 640 X 480 resolution only. If you change resolution, you can only view the extemal display (intemal display will "white out").
Test Set IO	25-pinD-Sub connector, available for extemal test set control.
Power IO	9-pin D-Sub, fermere; analog and digital IO
Handler IO	36-pin paralle I/O port; all input/output signals are default set to negative logic; can be reset to positive logic via GPIB command.
Tigger Informetion	
Description	Typical Performence
Tigger In/Mers Tigger	
Nominal Input Impedance	5KOhms
MinimumPulse Width	1 us
DC DamageLevel	5.5 volts
Dive Voltage	TLL ($0,+5.0$) Volts

Tigger Infarmation (Cont)
Description Typical Pefformance

Triggerat/Mess Tingger Ready

Nominal Input Impedance	5KOmm
PulseWidh	=Data acquisition
Polarity	Selectable with sweep or point mode
Dive Voltage	TLL ($0,+5.0$) Volts
Trigger Inputs/Outputs (Alx 1\&2)	BNC(f), TLI/CMOS compatible
GPIB (two ports - dedicated controller and dedicated talker/listener)	24-pin D-sub (Type D-24), female; compatible with IEEE-488.
Parallel Port (LPT1)	25-pin D-Sub miniature connector, female; provides connection to printers or any other parallel port peripherals
Serial Port (COM 1)	9-pinD-Sub, male; compatible with RS-232
USB Port	Four ports on front panel (all Host) and five ports (four hosts and one Device) on rear panel. TypeA configuration (eight hosts) and Type B configuration (one Device), USB 2.0 compatible.
LAN	10/100BaseT Ethemet, 8 -pin configuration; auto selects between the two data rates
LinePower	
Description	Typical Performence
Power supply is auto switching	
Frequency, Voltage	50/60 Hz for 100240 VAC
Max	450 watts

${ }^{1}$ Measurement conditions: normalized to - 10 dBm 10 HzIFBW , averaging factor of 8 .
${ }^{2}$ Absolute LOfrequency is Front Panel set frequency plus 1 IF.
${ }^{3}$ No band crossings; IFBW $\geq 100 \mathrm{kHz}$ with 801 measurement points.
${ }^{4}$ Listed frequency is the harmonic frequency setting entered with front panel (frequencysetting entered with front panel plus \{F frequency\}* \{harmonic number\}) at typical power.

Table 4. Front Panel Information

Description	Typical Performence
USB2.0Parts	
Number of ports	4
Standard	Compatible with USB 2.0
Connector	USB Type-A female
Display	
Size	$26.3 \mathrm{~cm}(10.4$ in) diagonal color active matrixLCD; 1024 (horizontal) X768 (vertical) resolution
Refresh Rate	Vertical 60 Hz; Horizontal 46.08 kHz
Pixels	Adisplay is considered faulty if:

o More than 0.002% of the total pixels have a constant blue, green, red, or black appearance that will not change.
o Three or more consecutive pixds have a constant blue, green, red, or black appearance that will not change.

Display Range	
Magnitude	$H-2500 \mathrm{~dB}($ at $500 \mathrm{~dB} /$ div), max
Phase	$H-2500^{\circ}$ (at 500% div), max
Polar	10 pUnits, min
	10,000 Units, max

Display Resdution

Magnitude	$0.001 \mathrm{~dB} / \mathrm{div}$, min
Phase	$0.01 \% \mathrm{div}$, min
MarkerResdution	
Magnitude	0.001 dB, min
Phase	0.01°, min
Polar	10 pUnit, min

Table 5. Analyzer Dimensions and Weight

Cabinet Dimensions	Height	Width	Depth
Excluding front and rear panel hardware and feet	$\begin{gathered} 267 \mathrm{~mm} \\ 10.5 \mathrm{in} \end{gathered}$	$\begin{gathered} \hline 426 \mathrm{~mm} \\ 16.75 \mathrm{in} \end{gathered}$	$\begin{aligned} & \text { 533mm } \\ & 20.97 \mathrm{in} \end{aligned}$
Excluding front and rear panel hardware and feet. Including rack-mount flanges.	$\begin{aligned} & 266 \mathrm{~mm} \\ & 10.5 \mathrm{in} \\ & \operatorname{EARU}^{\mathbf{1}}=6 \end{aligned}$	$\begin{gathered} \hline 426 \mathrm{~mm} \\ 16.75 \mathrm{in} \end{gathered}$	$\begin{gathered} \hline 558 \mathrm{~mm} \\ 21.95 \mathrm{in} \end{gathered}$
As shipped - including front panel cornectors, rear panel bumpers, and feet.	280mm11.0in	$435 \mathrm{mm17.1}$ in	$\begin{aligned} & \text { 558mm21.95 } \\ & \text { in } \end{aligned}$
As shipped including rack-mount flanges	$\begin{gathered} \hline 280 \mathrm{~mm} \\ 11.0 \mathrm{in} \end{gathered}$	$\begin{aligned} & 483 \mathrm{~mm} \\ & 19.00 \mathrm{in} \end{aligned}$	$\begin{aligned} & 558 \mathrm{~mm} \\ & 21.95 \mathrm{in} \end{aligned}$
Weight			
	Stanckrd	Otion 108	--
Net	$21 \mathrm{~kg}(45 \mathrm{lb})$, nominal	$\begin{aligned} & \hline 22 \mathrm{~kg}(48 \mathrm{lb}), \\ & \text { nominal } \end{aligned}$	--
Shipping	37 kg (82 lb), nominal	38 kg (85 lb), nominal	--

${ }^{1}$ Feet removed from the N5264A

NOTE For Regulatory and Environmental information, refer to the PNA Series Installation and Quick Start Guide, located online at
http:// literature.cdn.keysight.com/litweb/ pdf/E8356-90001. pdf.

This information is subject to change without notice. © Keysight Technologies 2014-2015
Print Date: October 20, 2015

www.keysight.com

[^0]: ${ }^{1}$ Includes sweep time, retrace time and band-crossing time. Analyzer display tumed on. Minus 21 ms fromtotal time for display off with DISPLAY:ENABLE OFF. Data for two traces (A\&B receiver) per measurement.
 ${ }^{2}$ After first complete sweep.
 ${ }^{3}$ When configuring the N5264A Option 108 as the LO source, you may improve systemmeasurement sensitivity by using a method of AM noise suppression.
 ${ }^{4}$ Performance Characteristics when connected with 85309A and 85320AB B mixers - systemnoise floor + conversion gain.
 ${ }^{5}$ Measured when using the SCPI command DISPlay. VSible OFF.
 ${ }^{6}$ Values are for real and imaginary pairs, with the analyzer display off.

